Thuyet tuong doi Einstein

Màu nền
Font chữ
Font size
Chiều cao dòng

Chuyển động phải chăng là tương đối?

Sau ít phút suy nghĩ, hẳn bạn sẽ nghiêng về câu trả lời: "Vâng, tất nhiên". Bạn hãy hình dung

một tàu hoả chuyển động lên phía bắc với vận tốc 60 km/giờ. Một người trong con tàu đi ngược

lên phía nam với vận tốc 3km/giờ. Anh ta đang chuyển động theo hướng nào và vận tốc là bao

nhiêu. Hoàn toàn rõ ràng là không thể trả lời câu hỏi này mà không chỉ ra hệ thống tính toán.

So với con tàu anh ta chuyển động về phía nam với vận tốc 3 km/giờ. So với trái đất, anh ta

chuyển động về phía bắc với vận tốc 60 trừ 3, tức 57km/giờ.

Có thể nói rằng vận tốc của người so với trái đất (57 km/giờ) là vận tốc thực tuyệt đối được

không? Không, bởi vì có cả những hệ thống khác có tỉ lệ còn lớn hơn. Bản thân trái đất đang

chuyển động. Nó quay xung quanh trục của nó, đồng thời cũng chuyển động xung quanh mặt

trời.

Mặt trời cùng các hành tinh khác chuyển động bên trong thiên hà. Thiên hà quay và chuyển

động so với các thiên hà khác. Các thiên hà lại tạo thành các đoạn thiên hà chuyển động đối với

nhau, không ai biết được các chuỗi chuyển động này trên thực tế có thể tiếp tục đến bao xa,

không có một cách thức rõ ràng xác định chuyển động của một đối tượng nào đó; nói khác đi là

không có một hệ thống đọc số cố định theo đó có thể đo được mọi chuyển động. Chuyển động

và đứng yên, giống như lớn và nhỏ, nhanh và chậm, trên và dưới, trái và phải, như mọi người

đã biết, đều là hoàn toàn tương đối. Không có cách nào đo chuyển động bất kì, ngoài việc so

sánh chuyển động của nó với chuyển động của một đối tượng khác.

Thật là không đơn giản chút nào! Còn nếu như có thể giới hạn chỉ vào điều đã nói về tính tương

đối của chuyển động thì hẳn đã không cần thiết để Anhxtanh sáng lập ra thuyết tương đối.

Nguyên do rắc rối như sau: có hai phương pháp rất đơn giản phát hiện chuyển động tuyệt đối.

Một trong những phương pháp đó là sử dụng bản chất của ánh sáng, còn phương pháp khác là

các hiện tượng khác nhau của quán tính xuất hiện khi thay đổi bởi đối tượng chuyển động của

đường đạn hoặc vận tốc. Thuyết Tương đối hẹp của Anhxtanh có liên quan đến phương pháp

đầu tiên, còn thuyết Tương đối tổng quát thì liên quan đến phương pháp thứ hai. Ở chương này

và hai chương tiếp theo sẽ đề cập đến phương pháp đầu, ngõ hầu làm chìa khoá để hiểu về

chuyển động tuyệt đối, tức là phương pháp vận dụng bản chất của ánh sáng.

Ở thế kỷ XIX, trước cả Anhxtanh, các nhà vật lý đã hình dung ra một không gian chứa đầy một

loại chất đặc biệt, không chuyển động và không nhìn thấy, được gọi là ête. Thường người ta gọi

nó là ête "mang ánh sáng", ngụ ý rằng nó là vật mang sóng ánh sáng. Ete chất đầy toàn bộ vũ

trụ. Nó thẩm thấu vào toàn bộ các thực thể vật chất. Nếu như tất cả không khí đều lúc lắc dưới

một quả chuông bằng kính đã bị chất đầy ête, làm sao mà ánh sáng có thể đi qua chân không

được? Ánh sáng đó là chuyển động bằng sóng. Như vậy, hẳn là có sự xuất hiện các dao động

đây. Bản thân ête cả khi tồn tại dao động hiếm khi (nếu không nói rằng không bao giờ) chuyển

động so với các đối tượng vật chất, các vật càng chuyển động nhanh hơn qua nó tương tự như

chuyển động của các dây bột trong nước. Chuyển động tuyệt đối của ngôi sao, của hành tinh

hoặc của một đối tượng khác bất kỳ được đơn giản hoá (các nhà vật lý thời kỳ này tin tưởng như

vậy), nếu chuyển động được xem xét với cả biển ête không chuyển động, không nhìn thấy được.

Nhưng, các bạn sẽ hỏi rằng, nếu như ête là một thực thể phi vật chất không thể nhìn thấy được,

không thể nghe thấy được, cảm thấy, ngửi hoặc nếm được vị của nó, thì làm sao có thể nghiên

cứu chuyển động, chẳng hạn, của trái đất so với nó? Câu trả lời thật đơn giản. Người ta có thể

đo được nhờ so sánh chuyển động của trái đất với chuyển động của chùm ánh sáng.

Muốn hiểu điều đó, ta hãy xem xét thời gian đối với bản chất của ánh sáng. Trên thực tế, ánh

sáng chỉ là phần nhỏ bé nhìn thấy được của phổ bức xạ điện từ mà thành phần của nó gồm có

sóng vô tuyến, sóng cực ngắn, tia hồng ngoại, tia tử ngoại và các tia gamma. Trong cuốn sách

này, chúng ta sử dụng từ "ánh sáng" để chỉ một kiểu bất kỳ của bức xạ điện từ, bởi vì từ đó

ngắn hơn từ "bức xạ điện từ". ánh sáng là chuyển động mang tính sóng.

Suy nghĩ về sự chuyển động như vậy mà không suy nghĩ đồng thời về ête vật chất dường như

đối với các nhà vật lý thời trước là thật phi lý, giống hệt như suy nghĩ về sóng trong nước mà

không suy nghĩ về bản chất nước vậy.

Nếu như được bắn ra từ một máy bay phản lực đang chuyển động theo hướng chuyển động của

máy bay, thì vận tốc của viên đạn đối với trái đất sẽ lớn hơn vận tốc của viên đạn bắn ra từ

khẩu súng trường trên mặt đất, vận tốc của viên đạn đối với trái đất thu được bằng cách cộng

vận tốc của máy bay và vận tốc của viên đạn. Trong trường hợp này, vận tốc của chùm sáng

không phụ thuộc vào vật thể mà từ đó ánh sáng được phát ra - thực tế này đã được chứng

minh bằng thực nghiệm vào cuối thế kỷ XIX và đầu thế kỷ XX và từ đó với nhiều lần được khẳng

định. Lần kiểm tra cuối cùng được tiến hành vào năm 1955 bởi các nhà thiên văn Xô - Viết bằng

cách sử dụng ánh sáng từ phía đối lập của mặt trời đang tự quay. Một rìa của Mặt Trời luôn

chuyển động về phía chúng ta, còn rìa kia thì về phía đối lập. Đã tìm thấy rằng ánh sáng từ hai

rìa đi tới trái đất với một vận tốc như nhau. Các thí nghiệm tương tự được tiến hành cả hàng

chục năm trước với ánh sáng của các ngôi sao kép đang chuyển động. Mặc dù có sự chuyển

động của nguồn sáng, vận tốc ánh sáng trong khoảng trống luôn như nhau, khoảng 300.000

km/giây.

Thử xem bằng cách nào mà sự kiện này tạo ra phương pháp cho nhà khoa học (chúng ta sẽ gọi

họ là nhà quan sát) tính được vận tốc tuyệt đối. Nếu ánh sáng truyền bá qua môi trường ête

không chuyển động, không thay đổi với một vận tốc nhất định và nếu vận tốc đó không phụ

thuộc vào vận tốc chuyển động của nguồn sáng, thì vận tốc ánh sáng có thể dùng làm tiêu

chuẩn để xác định chuyển động tuyệt đối của người quan sát.

Người quan trắc chuyển dịch cùng hướng với chùm sáng hẳn đã phát hiện ra rằng, chùm sáng

đi qua anh ta với vận tốc nhỏ hơn c: người quan trắc đang chuyển dịch ngược với chùm sáng

hẳn phải nhận thấy rằng chùm sáng đến gần anh ta với vận tốc lớn hơn c. Nói khác đi, kết quả

đo vận tốc ánh sáng hẳn phải thay đổi tuỳ thuộc vào sự chuyển dịch của người quan trắc so với

chùm sáng. Những thay đổi này hẳn đã phản ánh sự chuyển dịch tuyệt đối thực sự thông qua

môi trường ête.

Khi mô tả hiện tượng này, các nhà vật lý thường sử dụng khái niệm "ngọn gió ête". Để hiểu nội

dung của thuật ngữ này, ta hãy nghiên cứu lại con tàu đang chuyển động. Chúng ta thấy rằng

vận tốc của người đi trên con tàu là 3km/giờ luôn luôn là như nhau so với con tàu và không phụ

thuộc vào việc anh ta đi về phía đầu máy hay về phía cuối con tàu. Điều đó sẽ đúng cả đối với

vận tốc của sóng âm thanh bên trong toa tàu đóng kín. Âm thanh là chuyển động mang tính

sóng được chuyển tải bởi các phần tử không khí. Bởi vì không khí có bên trong toa tàu, âm

thanh ở bên trong toa sẽ truyền bá lên phía bắc cùng với vận tốc (so với toa tàu) như về phía

nam.

Tình hình sẽ thay đổi nếu như chúng ta chuyển từ một toa hành khách khép kín sang một sân

ga ngoài trời. Không khí trong toa ít bị giam hãm hơn. Nếu như con tàu chuyển động với vận tốc

60km/giờ, do sức cản của gió, vận tốc của âm thanh theo hướng từ cuối đến đầu toa sẽ nhỏ

hơn bình thường. Vận tốc của âm thanh theo hướng ngược lại sẽ lớn hơn bình thường.

Các nhà vật lý của thế kỷ XIX đã tin rằng, môi trường ête cũng giống như không khí đang thổi

trên sân ga. Vậy có gì khác đi không? Nếu ête không chuyển động thì bất kỳ một vật thể nào

chuyển dịch trong đó đều bắt gặp ngọn gió ête thổi theo hướng ngược lại. Ánh sáng là chuyển

động mang tính sóng trong môi trường ête không chuyển động. Ngọn gió ête, đương nhiên có

ảnh hưởng đến vận tốc ánh sáng đo được từ một vật thể chuyển động.

Trái đất tồn tại trong không gian bằng cách quay xung quanh mặt trời với vận tốc khoảng

30km/giây. Chuyển động này theo các nhà vật lý, phải tạo ra ngọn gió ête thổi ngược chiều với

trái đất trong khoảng trống giữa các nguyên tử với vận tốc 30km/giây. Muốn đo chuyển động

tuyệt đối của trái đất (chuyển động đối với môi trường ête không di động), chỉ cần đo vận tốc,

mà với vận tốc đó, ánh sáng đi qua một khoảng cách nhất định nào đó trên bề mặt trái đất. Nhờ

ngọn gió ête, ánh sáng sẽ chuyển động nhanh hơn theo hướng này so với hướng khác. So sánh

vận tốc của ánh sáng phát ra theo các hướng khác nhau là có thể tính toán được hướng tuyệt

đối với vận tốc chuyển động của trái đất tại một thời điểm đã biết bất kỳ. Thí nghiệm này được

đề xuất lần đầu tiên vào năm 1875, 4 năm trước khi Anhxtanh ra đời, bởi nhà vật lý vĩ đại người

Scotland tên là J. C Macxoen.

Thí nghiệm của Maikenson-Moocly

Năm 1881, Anbe Abraham Maikenxơn, lúc đó là một sĩ quan trẻ của hải quân Hoa Kỳ, đã đích

thân làm cuộc thí nghiệm này. Maikenxơn sinh ở Đức, bố mẹ ông là người Balan. Cha ông di cư

sang Mỹ khi Maikenxơn mới được hai tuổi.

Sau khi tốt nghiệp học việc hải quân ở Anapolixơ và phục vụ hai năm trong quân ngũ,

Maikenxơn bắt đầu dạy vật lý và hoá học tại học viện này. Sau khi nghỉ phép dài, ông sang châu

Âu du học. Tại trường Đại học Berlin, trong phòng thí nghiệm của nhà vật lý học người Đức nổi

tiếng German Hemhônxơ, chàng thanh niên trẻ lần đầu tiên có ý định khám phá ngọn gió ête.

Điều ngạc nhiên lớn đối với ông là không dựa vào một phương hướng của địa bàn, ông đã phát

hiện ra sự khác biệt trong tốc độ khứ hồi của ánh sáng. Điều đó cũng giống như con cá phát

hiện rằng nó có thể bơi theo một hướng bất kì trong biển mà không kịp nhận ra chuyển động

của nước đối với cơ thể của nó, cũng giống như người phi công bay với cái lồng cabin mở của

máy bay mà không nhận ra ngọn gió thổi táp vào mặt.

Nhà vật lý học người Áo nổi tiếng Ernest Makhơ (chúng ta sẽ có dịp nói về ông ở chương 7) khi

đó đã có sự phê phán đối với quan niệm về chuyển động tuyệt đối qua môi trường ête.

Sau khi đọc bản báo cáo được công bố của Maikenxơn về thí nghiệm, ông đã kết luận ngay rằng

cần phải loại bỏ quan niệm về môi trường ête. Song đa số các nhà vật lý đã từ chối đi một bước

táo bạo như vậy. Dụng cụ của Maikenxơn khá thô sơ, chỉ đủ để có cơ sở cho rằng, cuộc thí

nghiệm nếu có được những máy móc nhạy bén hơn chắc chắn sẽ cho kết quả khả quan. Bản

thân Maikenxơn cũng nghĩ như vậy. Không thấy được sai lầm trong thí nghiệm của mình, ông đã

cố gắng lập lại cuộc thí nghiệm.

Maikenxơn đã chối bỏ phục vụ trong hải quân và trở thành giáo sư tại trường khoa học thực

nghiệm Câyxơ (bây giờ là đại học Câyxơ) ở Clipland, bang Ohio. Gần đó, tại trường Đại học

miền Tây, Moocly dạy môn hoá học. Hai ông trở thành đôi bạn tốt của nhau. "Bên ngoài - Becna

Jaffe đã viết trong cuốn sách Maikenxơn và tốc độ ánh sáng - hai nhà bác học này là hình mẫu

tương phản. Maikenxơn điển trai, rực rỡ, luôn luôn mày râu nhẵn nhụi. Moocly của đáng tội, cẩu

thả trong ăn mặc và điển hình là một giáo sư đãng trí, đầu tóc bù xù khó coi".

Năm 1887, trong căn hầm của phòng thí nghiệm Moocly, hai nhà bác học đã tiến hành cuộc thí

nghiệm thứ hai chuẩn xác hơn để tìm ra ngọn gió ête chưa bị nắm bắt. Thí nghiệm của họ nổi

tiếng với tên gọi là thí nghiệm Maikenxơn - Moocly, một bước ngoặt vĩ đại của vật lý học hiện

đại.

Máy móc được đặt trên một phiến đá hình vuông có cạnh gần một mét rưỡi và bề dày hơn 30

cm. Phiến đá này đặt trôi nổi trong nước thuỷ ngân để loại trừ hiện tượng rung và giữ thăng

bằng ngõ hầu cho phép dễ dàng quay nó xung quanh trung tâm. Một hệ thống gương hướng

chùm sáng theo hướng nhất định, tấm gương phản xạ chùm sáng tới và lui theo hướng sao cho

chùm sáng tạo thành tấm gương gấp khúc. (Điều này nhằm mục đích kéo dài tối đa đoạn

đường đồng thời giữ cho kích thước của dụng cụ vừa đủ để nó có thể quay được dễ dàng).

Đồng thời, một hệ thống gương khác dẫn nguồn sáng đến tâm theo đường gấp khúc theo

hướng tạo thành vuông góc với chùm sáng đầu tiên.

Giả sử rằng khi phiến đá bị quay sao cho một trong các chùm sáng đi tới đi lui song song với

ngọn gió ête , thì chùm sáng sẽ tạo ra tia sáng trong thời gian lớn hơn, chùm sáng khác đi qua

cũng khoảng cách như vậy. Ban đầu đường đi ngược lại mới là đúng. Ta hãy xem xét ánh sáng

truyền bá theo chiều gió và ngược chiều gió. Phải chăng gió sẽ tăng tốc trên một đường cùng

với giảm tốc trên đường khác? Nếu quả là như vậy thì việc tăng tốc và giảm tốc đã được cân

bằng và thời gian chi phí cho đoạn đường đi hẳn cũng bằng với khi không có ngọn gió nào nói

chung.

Thực vậy, ngọn gió sẽ tăng tốc theo một hướng đúng bằng với giá trị bị giảm đi ở hướng khác,

song điều quan trọng nhất là ngọn gió sẽ giảm tốc trong suốt khoảng thời gian. Các tính chất

chỉ ra rằng để khắc phục cả đoạn đường ngược ngọn gió phải mất khoảng thời gian lớn hơn là

khi vắng ngọn gió. Ngọn gió sẽ hoạt động chậm lại cả đối với chùm sáng truyền bá vuông góc

với nó. Điều này cũng dễ dàng được xác nhận.

Dường như là hoạt động chậm lại giảm thiểu trong trường hợp chùm sáng truyền bá song song

với ngọn gió. Nếu như trái đất chuyển động qua biển ête không di động thì hẳn phải xuất hiện

ngọn gió ête và dụng cụ của Maikenxơn - Moocly hẳn phải ghi lại được. Trên thực tế cả hai nhà

bác học đều tin rằng, họ có thể không chỉ phát hiện ra ngọn gió, mà còn xác định (quay phiến

đá cho đến khi tìm được một vị trí mà tại đó khác biệt thời gian đi qua của ánh sáng theo cả hai

hướng là cực đại) vào một thời điểm đã cho bất kỳ hướng chính xác chuyển động của trái đất,

qua môi trường ête.

Cần phải thấy rằng dụng cụ của Maikenxơn - Moocly đã không đo được vận tốc thực của ánh

sáng của từng chùm sáng. Cả hai chùm sáng, sau khi đã hoàn thành số đường gấp khúc đi và

đến (khứ hồi), đã được thống nhất thành một chùm sáng duy nhất ngõ hầu có thể quan sát

trong kính viễn vọng trung bình. Dụng cụ được quay chậm rãi. Một sự thay đổi bất kỳ của vận

tốc tương đối của hai chùm sáng hẳn đã gây ra sự di động của bức tranh giao thoa vì các gian

sáng tối đan xen lẫn nhau.

Và một lần nữa, Maikenxơn lại thất bại và buồn chán. Các nhà vật lý học trên thế giới cũng

sửng sốt. Mặc dù Maikenxơn và Moocly đã đảo dụng cụ, họ vẫn không nhận ra một dấu vết nào

của ngọn gió ête! Chưa bao giờ trước đó trong lịch sử khoa học gặp phải một kết cục bi đát như

vậy. Maikenxơn phải thú nhận một lần nữa rằng thí nghiệm của ông đã không thành công. Ông

không hề nghĩ rằng "sự không thành công này khiến cho cuộc thí nghiệm của ông trở thành một

trong những thí nghiệm tầm cỡ nhất, cách mạng nhất trong lịch sử khoa học".

Ít lâu sau, Maikenxơn và Moocly đã làm lại cuộc thí nghiệm cùng với dụng cụ hoàn thiện hơn.

Các nhà vật lý khác cũng làm như vậy. Các cuộc thí nghiệm chính xác nhất đã được thực hiện

vào năm 1960 bởi Saclơ Taunxơ ở trường đại học Colombia. Bộ dụng cụ của ông có sử dụng

maze (đồng hồ nguyên tử, dựa trên những dao động của các phân tử), nhạy cảm đến mức có

thể nhận ra ngọn gió ête, kể cả khi trái đất chuyển động với vận tốc chỉ bằng phần nghìn vận

tốc thực. Nhưng dấu vết của một ngọn gió như vậy cũng bặt vô âm tín.

Các nhà vật lý ban đầu ngạc nhiên về kết quả tiêu cực của thí nghiệm Maikenxơn - Moocly đã

nghĩ tới một sự giải thích để cứu lý thuyết về ngọn gió ête, tất nhiên nếu như thí nghiệm được

tiến hành hàng trăm năm trước đó. Theo nhận xét của G. J. Uitroi trong cuốn sách Sự cấu

thành của vũ trụ, việc giải thích rất đơn giản về sự cấu thành của trái đất đã nhanh chóng ăn

sâu vào tiềm thức mỗi người. Nhưng điều giải thích đó của thí nghiệm dường như không đúng

với sự thật. Lời giải thích tốt nhất là lý thuyết (lâu hơn nhiều so với thí nghiệm Maikenxơn -

Moocly) khẳng định rằng ête được hấp dẫn bởi trái đất, giống như không khí ở bên trong toa tàu

đóng kín. Cả Maikenxơn cũng suy nghĩ như vậy. Nhưng những thí nghiệm khác, trong đó có thí

nghiệm do chính Maikenxơn thực hiện, đã loại bỏ cả lối giải thích đó.

Nhà vật lý học Ailen J.F. Phitxơjeral có sự giải thích độc đáo nhất. Ông nói: Có thể là ngọn gió

ête đã áp chế vật thể đang chuyển động buộc nó phải co lại theo hướng của chuyển động. Để

xác định độ dài của vật thể đang chuyển động phải lấy độ dài của nó trong trạng thái đứng yên

nhân với đại lượng được cho bởi công thức: căn bậc 2 của 1 - v2/c2. Trong đó, v bình phương

là bình phương vận tốc của vật thể đang chuyển động, còn c bình phương là bình phương vận

tốc ánh sáng.

Từ công thức trên có thể thấy rằng giá trị giảm thiểu nhỏ không đáng kể khi vận tốc vật thể

nhỏ, tăng lên khi vận tốc tăng và trở thành lớn khi vận tốc của vận thể tiến gần tới vận tốc ánh

sáng. Ví như, một con tàu vũ trụ về hình dạng giống như điếu xì gà dài, khi chuyển động với vận

tốc lớn sẽ có hình dạng điếu xì gà ngắn.

Vận tốc ánh sáng là giới hạn không đạt tới được; đối với vật thể chuyển động với vận tốc này,

công thức có dạng: căn bậc 2 của 1 - c2/c2, và biểu thức này bằng 0. Nhân độ dài vật thể với

số 0, ta sẽ được đáp số bằng 0. Nói cách khác đi, nếu như có một vật thể bất kỳ có thể đạt tới

vận tốc ánh sáng, thì nó sẽ không có một độ dài nào theo hướng chuyển động của bản thân nó!

Nhà vật lý Henđri Lorenxơ, người độc lập cũng đi đến giải thích như vậy về hình dạng toán học

của lý thuyết Phitxơjeral (về sau Lorenxơ đã trở thành một trong những người bạn gần gũi nhất

của Anhxtanh, song thời gian đó hai người vẫn chưa quen nhau). Lý thuyết này cũng nổi tiếng

như lý thuyết giảm thiểu của Lorenxơ - Phitxơjeral hay (Phitxơjeral - Lorenxơ).

Dễ dàng hiểu được lý thuyết giảm thiểu đã giải thích sự thất bại của thí nghiệm Maikenxơn -

Moocly như thế nào. Nếu như phiến đá hình vuông và toàn bộ dụng cụ trên đó giảm thiểu chút

ít theo hướng mà ngọn gió ête thổi thì ánh sáng hẳn đã đi một đoạn đường đầy đủ ngắn hơn.

Và mặc dù ngọn gió đã tác động chậm lại đối với chuyển động của chùm sáng theo hướng

thuận và nghịch con đường ngắn hơn hẳn đã cho phép chùm sáng kết thúc cuộc hành trình đó

đúng trong thời gian như vậy, giống như nếu không có gió, không có sự giảm thiểu. Nói khác đi,

sự giảm thiểu đúng là để bảo toàn sự không đổi của vận tốc ánh sáng độc lập với hướng đảo

dụng cụ của Maikenxơn - Moocly.

Bạn có thể hỏi tại sao không thể đo một cách đơn giản độ dài của dụng cụ và xem xét có phải

trên thực tế có sự rút ngắn theo hướng chuyển động của trái đất? Nhưng chính là thước dài

cũng bị rút ngắn theo cùng một tỷ lệ. Việc đó đã cho ta kết quả hệt như khi không có sự rút

ngắn. Trên trái đất đang chuyển động, mọi thứ đều bị rút ngắn. Tình hình như vậy giống như

trong thí nghiệm thuần lý của Poăngcarê, trong đó vũ trụ đột nhiên lớn lên hàng nghìn lần,

nhưng chỉ trong lý thuyết của Lorenxơ - Phitxơjeral việc đó mới xuất phát theo một hướng duy

nhất. Bởi vì mọi thứ đều bị thay đổi nên không có phương pháp phát hiện hướng. Bên trong các

giới hạn nhất định (các giới hạn được xác định bởi topo học, tức là khoa học về các thuộc tính

được bảo toàn khi làm biến dạng đối tượng) hình dạng cũng tương đối như kích thước. Hiện

tượng co rút của dụng cụ cũng như co rút mọi thứ trên trái đất phải chăng chỉ được nhận ra đối

với những ai đứng bên ngoài trái đất và không chuyển động cùng với nó.

Nhiều nhà văn khi nói về thuyết tương đối đã xem giải thiết co rút Lorenxơ - Phitxơjeral là giả

thuyết ad hoc (thành ngữ Latin có nghĩa là "chỉ để cho trường hợp đã biết"), không kiểm tra

được bằng bất cứ thí nghiệm nào khác. Adolpho Grunbaun cho rằng điều đó không hoàn toàn

đúng. Giả thuyết co rút ad hoc chỉ có nghĩa là không có cách nào kiểm tra nó.

Trên nguyên tắc, nó hoàn toàn không ad hoc và điều đó đã được chứng minh vào năm 1932,

khi Kennơđi và Tơcđaicơ bác bỏ bằng thực nghiệm giả thiết này.

Kennơđi và Tơcđaicơ, hai nhà vật lý học Mỹ đã lập lại thí nghiệm Maikenxơn - Moocly. Nhưng

thay vì đạt tới hai đường vai bằng nhau, họ lại làm cho độ dài của chúng khác nhau cực lớn. Để

phát hiện thời gian hao phí cho ánh sáng đi qua theo hai đường, các ông đã đảo dụng cụ. Phù

hợp với lý thuyết rút ngắn chênh lệch thời gian phải thay đổi khi đảo máy. Có thể nhận thấy điều

đó (như trong thí nghiệm của Maikenxơn - Moocly) theo sự thay đổi của bức tranh giao thoa

xuất hiện khi đan xen hai chùm sáng. Nhưng người ta đã không phát hiện ra sự thay đổi như

vậy.

Kiểm tra một cách đơn giản nhất lý thuyết rút ngắn có thể thực hiện được khi đo vận tốc chùm

sáng truyền bá theo các hướng đối nghịch: dọc theo hướng chuyển động của trái đất và ngược

với nó. Rõ ràng rằng rút ngắn đoạn đường không thể nào phát hiện ngọn gió ête, nếu như nó

có tồn tại. Trước khi khám phá không lâu hiệu ứng Mocbacơ (sẽ đề cập ở chướng 8) nhiều khó

khăn kỹ thuật ghê gớm đã ngăn trở thực thi thí nghiệm này. Tháng 2 năm 1962, tại hội nghị của

Hội Hoàng gia tại London, giáo sư Mulơ của trường đại học Copenhagen đã kể rằng, có thể dễ

dàng thực hiện thí nghiệm này khi sử dụng hiệu ứng Mocbacơ. Muốn vậy, nguồn sáng và hấp

thụ dao động điện từ được đặt trên các đầu đổi điện của bàn quay. Mulơ chỉ ra rằng thí nghiệm

như vậy có thể đảo lộn lý thuyết rút ngắn ban đầu; có thể là khi đang in cuốn sách này thí

nghiệm đó sẽ được thực thi.

Mặc dù các thí nghiệm đại loại như vậy không thể thực hiện được ở thời Lorenxơ, nó tiên liệu

khả năng có tính nguyên tắc của chúng và được xem là hoàn toàn phù hợp lý của việc đề xuất

rằng những thí nghiệm này, giống như thí nghiệm của Maikenxơn sẽ dẫn đến thất bại. Muốn

giải thích điều đó, Lorenxơ đã có bổ xung quan trọng vào lý thuyết rút ngắn ban đầu. Ông nói

rằng các đồng hồ hẳn phải chậm lại dưới tác động của ngọn gió ête, đồng thời như vậy là vận

tốc đo được của ánh sáng luôn luôn bằng 300.000 km/giây.

Ta hãy xem xét một thí dụ cụ thể. Giả sử chúng ta có những đồng hồ đủ độ chính xác để làm thí

nghiệm về đo đạc vận tốc ánh sáng. Cho ánh sáng đi từ điểm A đến điểm B chẳng hạn theo

hướng chuyển động của trái đất. Đặt cùng lúc hai đồng hồ tại điểm A và sau đó chuyển một cái

sang điểm B. Ta thấy rằng thời gian khi chùm sáng dời khỏi điểm A và (theo đồng hồ khác) thời

điểm nó đến tại điểm B. Bởi vì ánh sáng chuyển động lúc đó ngược với ngọn gió ête, vận tốc của

nó hẳn phải giảm đi một chút, mà thời gian tia gẫy khúc tăng lên so với trường hợp trái đất

đứng yên. Các bạn có thấy điều bất cập trong luận đề này không? Đồng hồ chuyển động từ

điểm A sang điểm B, cũng đều là chuyển động ngược gió ête. Điều đó làm chậm đồng hồ tại

điểm B, nó sẽ chậm hơn một chút so với đồng hồ tại điểm A. Kết quả vận tốc ánh sáng được là

không đổi bằng 300.000 km/giây.

Cũng xảy ra như vậy, (Lorenxơ xác nhận) nếu đo vận tốc ánh sáng truyền bá theo hướng ngược

lại, từ điểm B sang A. Hai đồng hồ cũng đặt tại điểm B và sau đó một cái được chuyển sang

điểm A. Chùm sáng trong khi truyền bá từ điểm B sang A sẽ chuyển động dọc theo ngọn gió

ête. Vận tốc của chùm sáng tăng lên và như vậy thời gian đi qua sẽ giảm đi chút ít so với

trường hợp trái đất đứng yên. Song khi chuyển dịch đồng hồ từ điểm B sang A thì ngọn gió ête

cũng "bám gót". Việc giảm bớt áp lực của ngọn gió ête cho phép đồng hồ tăng vận tốc, và như

vậy vào thời điểm kết thúc thí nghiệm, đồng hồ tại điểm A sẽ chạy nhanh lên so với đồng hồ tại

điểm B. Và kết quả là vận tốc ánh sáng vẫn là 300.000 km/giây.

Lý thuyết mới của Lorenxơ không chỉ giải thích kết quả tiêu cực của thí nghiệm Maikenxơn -

Moocly; từ đó mà rút ra là về nguyên lý không thể bằng thực nghiệm phát hiện ảnh hưởng của

ngọn gió ête đối với vận tốc ánh sáng. Các phương trình của ông để đo độ dài và thời gian cho

thấy, với bất kỳ phương pháp có thể nào, việc đo vận tốc ánh sáng theo một kết quả tương tự.

Rõ ràng rằng các nhà vật lý đã không thoả mãn lý thuyết đó. Nó là lý thuyết ad hoc (hiển nhiên)

theo đầy đủ ý nghĩa của từ đó. Những nỗ lực lấp lỗ hổng xuất hiện trong lý thuyết ête dường

như vô vọng. Không thể hình dung các giải pháp khẳng định hoặc phủ định nó. Các nhà vật lý

khó mà tin rằng sau khi tạo ra ngọn gió làm sao để không thể phát hiện ra ngọn gió ấy. Nhà

triết học kiêm toán học người Anh Betơrăng Rutxen đã dẫn một bài ca của hiệp sĩ Trắng trong

cuốn sách của Lui Kerolol Alixơ ở đất nước huyền thoại.

"Tôi muốn nhuộm mái tóc màu xanh. Xoè chiếc quạt để khỏi ai nhìn thấy".

Lý thuyết mới của Lorenxơ, trong đó thay đổi cả thời gian dường như là tức cười, kiểu như kế

hoạch của chàng hiệp sĩ nọ vậy. Nhưng mặc dầu dốc mọi nỗ lực, các nhà vật lý đã không thể

suy luận điều gì khá hơn.

Trong chương tiếp theo sẽ trình bày rằng, lý thuyết Tương đối hẹp của Anhxtanh đã mở lối ra

khỏi tình trạng rối rắm đó một cách dũng cảm tuyệt vời.

Năm 1905, khi Anbe Anhxtanh công bố bài báo nổi tiếng của mình mà về sau được gọi là thuyết

tương đối hẹp, ông mới chỉ là một chàng trai trẻ đã có vợ ở tuổi 26 và đang làm việc với tư cách

một chuyên gia phòng sáng chế Thụy Sĩ.

Thuyết tương đối hẹp - Phần I

Con đường của chàng sinh viên vật lý thuộc trường Đại học Bách khoa Duyric không sáng sủa

cho lắm. Ông đọc và đọc, suy nghĩ và mơ ước và không hướng suy nghĩ của mình vào các sự

kiện không căn bản để giành điểm cao trong các kỳ thi. Một vài lần ông đi dạy vật lý và muốn

làm một giáo viên bình thường, song ông buộc phải giã từ nghề.

Trong chuyện này có cả những mặt khác. Khi còn là một cậu bé, Anhxtanh đã suy nghĩ nhiều về

các định luật cơ bản của tự nhiên. Về sau, ông đã nhớ về hai điều tuyệt diệu nhất thời niên

thiếu của mình: về cái địa bàn mà người cha đã chỉ cho ông hay khi ông mới bốn, năm tuổi và

cuốn sách hình học của Ơcơlit mà ông đã đọc lúc mười hai tuổi. Hai kỷ vật này tượng trưng cho

hoạt động của Anhxtanh; địa bàn là tượng trưng cho hình học vật thể mà cấu trúc của "thế giới

rộng lớn" đó ở bên ngoài chúng ta. Chúng ta không bao giờ có thể nhận biết một cách chính xác

tuyệt đối. Cuốn sách là tượng trưng cho cho hình học thuần tuý, của cấu trúc được xác định

tuyệt đối nhưng không phản ánh hoàn toàn thế giới thực tại. Đến năm 16 tuổi, Anhxtanh chủ

yếu bằng những nỗ lực cá nhân nắm được những kiến thức cơ bản về toán học, bao gồm cả

hình học giải tích, các phép tính vi phân và tích phân.

Khi Anhxtanh làm việc tại phòng sáng chế Thụy Sĩ, ông đọc và suy nghĩ về tất cả các vấn đề rối

rắm có liên quan đến ánh sáng và chuyển động. Thuyết tương đối hẹp của ông là một thí

nghiệm sáng chói, giải thích được nhiều thí nghiệm không giải thích được, trong đó thí nghiệm

Maikenxơn - Moocly là hấp dẫn và nổi tiếng nhất. Cần phải nhấn mạnh rằng đã có nhiều thí

nghiệm mà kết quả không thoả mãn với lý thuyết về các hiện tượng điện từ. Nếu hai thí nghiệm

Maikenxơn - Moocly không xảy ra thì thuyết tương đối hẹp cũng khó mà hình thành. Sau này,

bản thân Anhxtanh đã nói về vai trò nhất định của thí nghiệm này trong tư duy sáng tạo của

ông. Tất nhiên nếu như Maikenxơn và Moocly ghi nhận ngọn gió ête thì thuyết tương đối hẹp

chắc đã bị bác bỏ ngay từ đầu. Song kết quả âm tính của các thí nghiệm của họ chỉ là một

trong nhiều yếu tố mà Anhxtanh đưa vào lý thuyết của mình.

Chúng ta thấy rằng Lorenxơ và Phitxơjeral đã mưa toan cứu lý thuyết ngọn gió ête như thế nào

sau khi đề xuất rằng áp lực của ngọn gió đó là gì đó còn chưa được hiểu biết đang tác động co

rút vật thể chuyển động. Anhxtanh tiếp nối sau Enest Makhơ đã có đề xuất táo bạo hơn. Nguyên

nhân mà Maikenxơn và Moocly không thể quan trắc được ngọn gió ête, Anhxtanh nói, đơn giản

chỉ là không có ngọn gió ête nào cả. Ông không nói rằng không có môi trường ête, nếu tồn tại

cũng không có ý nghĩa gì khi đo chuyển động đều. (Những năm gần đây nhiều nhà vật lý nổi

tiếng đã đề nghị khôi phục lại thuật ngữ ête, dù rằng lẽ đương nhiên không mang ý nghĩa cũ

của hệ thống đọc số bất động).

Vật lý cổ điển - vật lý học của Isac Niuton đã chỉ ra rằng, nếu như bạn đứng ở bên trong vật thể

chuyển động đều, chẳng hạn như trong toa tàu đóng kín mọi phía sao cho không nhìn thấy một

cảnh tượng đi qua, nếu không thực hiện được một thí nghiệm cơ học mà nhờ đó bạn chứng

minh được rằng bạn đang chuyển động (Đồng thời, tất nhiên giả thiết rằng chuyển động đều

xuất hiện hoàn toàn êm dịu, không có va chạm, chồm nhảy của toa ngõ hầu báo hiệu sự

chuyển động). Nếu như bạn ném quả cầu ngược lên phía trên, nó sẽ rơi thẳng xuống phía dưới.

Tất cả đều xảy ra chính xác giống như ném toa tầu đứng yên. người quan sát đứng trên mặt

đất bên ngoài toa tàu đang chuyển động , nếu như anh ta có thể nhìn qua thành tàu thì bản

thân anh ta đã nhìn thấy đường đi qua của quả cầu là đường cong. Nhưng đối với bạn ở bên

trong toa tàu, quả cầu chuyển động theo đường thẳng lên trên và xuống dưới. Điều khả quan là

vật thể đã diễn ra như vậy. Trong trường hợp ngược lại thì đã không thể chơi các trò chơi như

tennis hoặc bóng đá. Trong bất kỳ trường hợp nào, khi quả bóng bay lên không trung, trái đất

hẳn sẽ chuyển động bên dưới nó với vận tốc 30 km/giây.

Thuyết tương đối hẹp là một bước tiến về phía trước so với thuyết cổ điển của Niutơn. Nó nói

rằng, ngoài việc không thể phát hiện chuyển động của con tàu nhờ vào thí nghiệm cơ học cũng

không thể phát hiện chuyển động đó nhờ vào thí nghiệm với bức xạ điện từ. Thuyết tương đối

hẹp có thể diễn đạt ngắn gọn như sau: Không thể đo chuyển động đều bằng một phương pháp

tuyệt đối nào đó. Nếu như chúng ta ở trên một con tàu đang chuyển động đều một cách dịu êm,

thì để khẳng định rằng chúng ta đang chuyển động, cần phải nhìn qua cửa sổ vào một đối

tượng khác nào đó, nhờ vào một cột điện chẳng hạn, thậm chí lúc đó chúng ta cũng không thể

nói chắc chắn rằng con tàu đi qua cột điện hay cột điện đi qua con tàu. Tốt hơn cả chúng ta có

thể nói rằng con tàu và trái đất ở trong trạng thái chuyển động đều tương đối.

Chúng ta sẽ nhận thấy có sự lặp lại thường xuyên từ "đều". Chuyển động đều là chuyển động

theo một đường thẳng với vận tốc không đổi. Chuyển động không đều hoặc chuyển động có gia

tốc là chuyển động nhanh dần hoặc chậm dần (khi chuyển động chậm dần, người ta nói nó có

gia tốc âm), hoặc chuyển động không theo đường thẳng. Về chuyển động có gia tốc, thuyết

tương đối hẹp không thể nói điều gì mới.

Tính tương đối của chuyển động đều dường như khá thông đồng bén giọt, nhưng trên thực tế

nó dễ đưa ta sang một thế giới mới lạ lẫm, mà ban đầu rất giống với một thế giới vô nghĩa đằng

sau chiếc gương của Lui Kerol. Bởi vì nếu không có phương pháp đo chuyển động đều đối với hệ

thống đọc số tổng hợp bất động tương tự môi trường ête nên khi đó ánh sáng phải thể hiện là

hoàn toàn suy tưởng trái với bất kỳ thí nghiệm nào.

Chúng ta hãy xem nhà du hành vũ trụ trên con tàu vũ trụ hay dọc theo chùm sáng. Con tàu

chuyển động với vận tốc bằng một nửa vận tốc ánh sáng. Nếu nhà du hành vũ trụ tiến hành đo

đạc tương ứng, anh ta sẽ phát hiện rằng tia sáng dù sao cũng đi qua nó với vận tốc thông

thường 300.000 km/giây. Bạn hãy suy nghĩ về điều này một chút và bạn sẽ thấy ngay rằng nhất

thiết phải như vậy, nếu như khái niệm ngọn gió ête bị bác bỏ. Còn nếu như nhà du hành vũ trụ

tìm thấy rằng ánh sáng chuyển động so với nó chậm hơn, anh ta hẳn đã phát hiện ra chính

ngọn gió ête mà Maikenxơn và Moocly không phát hiện ra. Bây giờ nếu như còn tàu vũ trụ bay

thẳng theo hướng đến nguồn sáng với vận tốc bằng một nửa vận tốc ánh sáng, thì hẳn anh ta

đã tìm thấy rằng tia sáng tiến dần lại nhờ anh ra nhanh hơn một lần rưỡi chứ? Không, tia sáng

vẫn chuyển động ngược với anh ta với vận tốc 300.000 km/giây.

Dù anh ta chuyển động như thế nào đối với tia sáng, việc đo đạc luôn luôn cho ta cùng một giá

trị đối với vận tốc ánh sáng.

Có thể chúng ta thường nghe rằng thuyết tương đối làm cho mọi thứ trong vật lý học là tương

đối, rằng nó phá đi mọi cái tuyệt đối. Không có cái gì có thể rời xa sự thật. Nó làm cho nhiều

khái niệm trở thành tương đối mà trước đó người ta xem là tuyệt đối nhưng đồng thời cũng

chấp nhận những tuyệt đối mới. Trong vật lý học cổ điển, vận tốc ánh sáng là tương đối đối với

ý nghĩa là nó sẽ bị thay đổi tùy thuộc và chuyển động của người quan sát. Trong thuyết tương

đối hẹp, vận tốc ánh sáng trở nên tuyệt đối mới với ý nghĩa này. Không quan trọng ở chỗ nguồn

sáng hoặc nguồn quan sát chuyển động như thế nào, vận tốc ánh sáng đối với người quan sát

không bao giờ thay đổi.

Chúng ta hình dung hai con tàu vũ trụ A và B. Giả sử trong vũ trụ không có gì ngoài hai con tàu.

Chúng đều chuyển động ngược chiều nhau với vận tốc không đổi. Có phương pháp nào để các

nhà du hành trên con tàu bất kỳ có thể giải quyết xem trường hợp nào trong ba trường hợp sau

đây là "thực" và "tuyệt đối"?

1. Con tàu A ở trong trạng thái nằm yên, con tàu B chuyển động.

2. Con tàu B ở trong trạng thái nằm yên, con tàu A chuyển động.

3. Cả hai con tàu đều chuyển động.

Anhxtanh trả lời như sau : Không, không có một phương pháp nào như vậy cả. Nhà du hành

trên bất kỳ một con tàu nào đều có thể, nếu anh ta muốn, chọn con tàu A làm hệ thống đọc số

cố định. Không có một thí nghiệm nào kể cả các thí nghiệm với ánh sáng hoặc với bất kỳ hiện

tượng điện và từ nào khác ngõ hầu chứng minh rằng sự lựa chọn đó là không đúng. Cũng đúng

như vậy, nếu anh ta chọn con tàu B làm hệ thống đọc số cố định. Nếu như anh ta xem hai con

tàu đều chuyển động, anh ta lựa chọn giàn một hệ thống đọc số bất định bên ngoài hai con tàu

này, lựa chọn một điểm mà đối với điều đó, cả hai con tàu đều ở trong trạng thái chuyển động.

Không cần đặt câu hỏi sự lựa chọn nào là đúng hoặc không đúng. Nói về chuyển động tuyệt đối

của bất kỳ con tàu nào có nghĩa là nói về một cái gì đó không có ý nghĩa thực ra chỉ có một:

chuyển động tương đối mà kết quả của nó là con tàu tiến gần với vận tốc không đổi.

Trong cuốn sách như vậy không thể đi sâu vào các chi tiết của thuyết tương đối hẹp và đặc biệt

là vào các chi tiết có liên quan đến cơ sở toán học của nó. Chúng ta cần nhớ lại một số kết luận

mạnh mẽ nhất được rút ra một cách lôgic từ điều mà Anhxtanh gọi là hai "tiền đề cơ bản" của

lý thuyết của mình.

1. Không có phương pháp nhằm xác định vật thể nằm ở trạng thái đứng yên hoặc chuyển động

đều đối với môi trường ête bất động.

2. Độc lập với chuyển động của nguồn ánh sáng luôn luôn chuyển động qua khoảng không với

cùng một vận tốc không đổi.

(Không nên lẫn lộn tiền đề thứ hai như thường thấy là sự không đổi của vận tốc ánh sáng đối

với người quan sát chuyển động đều. Điều này rút ra từ các tiền đề).

Tất nhiên các nhà vật lý khác nghiên cứu cả hai tiền đề Lorenxơ có ý định dung hoà chúng trong

lý thuyết của mình rằng độ dài tuyệt đối và thời gian thay đổi do áp lực của ngọn gió ête. Đa số

các nhà vật lý đều cho điều đó là vi phạm nghiêm trọng đến tư duy lành mạnh. Họ ưa xem rằng

các tiền đề không phải là trùng lặp và chí ít một tiền đề phải là không chính xác. Anhxtanh đã

xem xét vấn đề này một cách sâu sắc hơn. Các tiền đề không trùng nhau chỉ trong trường hợp,

ông nói, khi chúng ta từ bỏ quan điểm cổ điển rằng độ dài và thời gian là tuyệt đối.

Khi Anhxtanh công bố lý thuyết của mình ông không biết rằng Lorenxơ cũng suy nghĩ theo

hướng như vậy, nhưng giống như Lorenxơ, ông hiểu ra rằng việc đo độ dài và thời gian phải tuỳ

thuộc vào chuyển động tương đối của đối tượng và người quan trắc. Song Lorenxơ chỉ đi được

nửa đường. Ông bảo lưu khái niệm độ dài và thời gian tuyệt đối đối với các vật thể đứng yên.

Ông cho rằng ngọn gió ête làm biến đổi độ dài và thời gian "thực". Anhxtanh đã đi con đường

ấy đến tận cùng. Ông nói không có ngọn gió ête nào cả. Khái niệm độ dài và thời gian tuyệt đối

không có ý nghĩa gì. Đó là cái chìa khoá thuyết tương đối hẹp của Anhxtanh. Khi ông tiếp cận

với nó, pháo đài bất khả xâm phạm bắt đầu được từ từ mở ra.

Để giải thích trực quan thuyết tương đối hẹp, Anhxtanh đã đề xuất một thí nghiệm lý thuyết nổi

tiếng của mình. Ta thử hình dung, ông nói, một người quan trắc M đứng gần nền đường sắt.

Tại một khoảng cách nào đó theo hướng chuyển động có một điểm B. Cùng trên một khoảng

cách đó ngược hướng chuyển động là điểm A. Giả sử rằng đồng thời tại hai điểm A và B loé lên

một tia chớp. Người quan sát cho rằng các sự kiện này là đồng thời, bởi vì anh ta nhìn thấy cả

hai tia chớp vào cùng một thời điểm. Bởi vì anh ta đứng ở giữa chúng và vì ánh sáng truyền bá

với vận tốc không đổi nên ông kết luận rằng tia chớp loé lên đồng thời tại hai điểm này.

Bây giờ ta giả thiết rằng khi tia chớp léo lên dọc nền đường sắt theo hướng từ A sang B. Một

con tàu chuyển động với vận tốc lớn. Vào thời điểm xuất hiện cả hai tia chớp người quan sát

bên trong con tàu ta gọi là M' đứng gần nền đường. Bởi vì M' chuyển động theo hướng một tia

chớp và ở xa tia khác, anh ta sẽ nhìn thấy tia chớp tại B trước khi thấy tại A. Biết rằng anh ta

đang ở trong trạng thái chuyển động anh ta bắt gặp điểm cuối của vận tốc ánh sáng và cũng rút

ra kết luận rằng các tia chớp loé lên đồng thời.

Tất cả đều trôi chảy. Nhưng theo như hai tiên đề cơ bản của thuyết tương đối hẹp (được khẳng

định bởi hai thí nghiệm của Maikenxơn - Moocly) chúng ta có thể có quyền giả thiết rằng con

tàu đứng yên trong khi trái đất chạy nhanh ở phía sau theo với các bánh xe lăn của con tàu. Từ

điểm ngắm M này người quan sát trên con tàu đi đến kết luận là tia chớp loé tại điểm B trên

thực tế đã xảy ra sớm hơn tại điểm A là điểm tiếp nối anh ta quan sát. Anh ta biết rằng đang ở

giữa các loé chớp anh ta bắt gặp đầu tiên đã xảy ra trước loé chớp anh ta bắt gặp lần sau. M,

người quan sát trên trái đất là tương hợp, thực ra, anh ta nhìn các loé chớp như đồng thời với

nhau, nhưng giờ đây anh ta được xem là đang chuyển động, khi anh ta tính đến vận tốc ánh

sáng và sự kiện là anh ta chuyển động ngược với loé chớp tại A và cách loé chớp tại B, anh ta đi

đến kết luận loé chớp tại B đã xảy ra trước.

Như vậy, chúng ta buộc phải kết luận rằng đối với các vấn đề loé chớp có xảy ra đồng thời

không thì không thể trả lời một cách tuyệt đối được. Câu trả lời phụ thuộc vào việc lựa chọn hệ

thống tính toán (đọc số). Tất nhiên nếu hai sự kiện xảy ra đồng thời tại cùng một điểm, thì có

thể tin tưởng tuyệt đối mà nói rằng chính là đồng thời. Khi hai máy bay đụng nhau trên không,

không có hệ thống tính toàn mà theo đó thì các máy bay đã tránh nhau không đồng thời. Nhưng

khoảng cách giữa các sự kiện càng lớn thì càng khó giải quyết vấn đề hơn về tính đồng thời của

chúng. Vấn đề là ở chỗ chúng ta đơn giản là không dám thừa nhận thực chất của vấn đề. Không

có thời gian tuyệt đối đối với vũ trụ để chúng ta có thể đo trạng thái đồng thời tuyệt đối. Tính

đồng thời tuyệt đối của các sự kiện xảy ra tại các không gian khác nhau là khái niệm không có ý

nghĩa gì.

Có thể hiểu thấu đáo quan điểm đó từ thí nghiệm lý thuyết (suy tưởng) trong đó khoảng cách

lớn và vận tốc lớn đều được nghiên cứu. Giả sự có ai đó trên hành tinh X, ở một phần khác của

thiên hà chúng ta muốn liên lạc với trái đất. Họ đánh tín hiệu, tín hiệu đó đương nhiên là một

sóng điện từ được truyền bá trong không gian với vận tốc ánh sáng. Giả sử trái đất và hành tinh

X cách nhau khoảng cách 10 năm ánh sáng. Điều đó có nghĩa là phải mất 10 năm để tín hiệu

đến được trái đất. 12 năm trước, khi nhà thiên văn vô tuyến trên trái đất nhận được tín hiệu

rằng ông được tặng giải Nobel. Thuyết tương đối hẹp cho phép chúng ta nói một cách thoải mái

rằng ông ta đã nhận được giải thưởng này sớm hơn là được tín hiệu từ hành tinh X.

Qua mười phút sau khi nhận được tín hiệu, nhà thiên văn này mất hút, thuyết tương đối hẹp cho

phép chúng ta nói, cũng không có hạn chế nào rằng nhà thiên văn đã mất hút sau khi nhận

được tín hiệu từ hành tinh X.

Bây giờ giả sử rằng tại một thời điểm nào đó trong khoảng mười năm khi tín hiệu radio (vô

tuyến) đang trên đường đến Trái Đất (chẳng hạn là 3 năm trước khi nhận được tín hiệu) nhà

thiên văn cùng với kính viễn vọng vô tuyến của mình bị ngã và bị gẫy chân. Thuyết tương đối

hẹp không cho phép chúng ta nói thoải mái rằng ông ta gãy chân sớm hơn hay muộn hơn sơ với

khi nhận được tín hiệu từ hành tinh X.

Chứng minh điều đó như sau: Người quan sát dời hành tinh X vào thời điểm khi đánh tín hiệu và

chuyển động về trái đất với vận tốc tốc nhỏ, nếu đo nó đối với Trái Đất sẽ tìm thấy (theo số đo

thời gian) rằng nhà thiên văn bị gẫy chân sau khi tín hiệu được gửi đi. Tất nhiên anh ta sẽ tới

trái đất qua nhiều thời gian sau khi được tín hiệu, có thể là, qua hàng trăm năm chẳng hạn.

Nhưng khi anh ta tính ngày chuyển tín hiệu theo đồng hồ của mình, nó sẽ sớm hơn ngày mà

nhà thiên văn bị gãy chân. Một người quan sát khác cũng dời hành tinh X và thời điểm khi đánh

tín hiệu, nhưng lại bay với vận tốc gần bằng vận tốc ánh sáng sẽ thấy rằng nhà thiên văn gẫy

chân trước khi tín hiệu được đánh đi. Thay vì có thể mất hàng trăm năm để vượt qua đoạn

đường, anh ta có thể mất chừng mười năm nếu đo thời gian trên trái đất. Nhưng do chậm trễ

thời gian trong con tàu vũ trụ chuyển động nhanh, nhà du hành vũ trụ trong con tàu này dường

như là đã trải qua đoạn đường cả thảy chỉ là một vài tháng. Trên trái đất người ta nói với anh ta

rằng nhà thiên văn mới gẫy chân hơn ba năm trước đây thôi. Theo đồng hồ của nhà du hành vũ

trụ, tín hiệu mới được chuyển đi vài tháng. Anh ta đi đến kết luận rằng châm mới gãy vài năm

trước khi tín hiệu dời khỏi hành tinh X.

Nếu như nhà du hành vũ trụ bay nhanh như vận tốc ánh sáng (đương nhiên, đó chỉ là giả

thuyết, trên thực tế thì không thể được), đồng hồ của anh ta hẳn là hoàn toàn dừng lại. Đối với

anh ta, dường như là chuyến bay xảy ra trong nháy mắt và cả hai sự kiện chuyển tín hiệu và

nhận tín hiệu đều phải diễn ra đồng thời. Tất cả các sự kiện xảy ra trên trái đất trong vòng

mười năm dường như đối với anh ta lúc xảy ra sớm hơn so với tín hiệu được đánh đi. Nhưng

theo thuyết tương đối hẹp không có hệ thống đọc số (tính toán) tách rời: không có cơ sở nào để

hài lòng với quan điểm của người quan sát này, mà không phải là của người kia. Những tính

toán tiến hành bởi nhà du hành vũ trụ bay nhanh cũng hợp lý, cũng "chân thực" như cách tính

toán tiến hành bởi nhà du hành vũ trụ bay chậm. Không có thời gian vạn năng, tuyệt đối để có

thể bằng vào đó mà xác định sai khác giữa chúng với nhau.

Sự phá vỡ khái niệm của tính đồng thời tuyệt đối đó, không nghi ngờ gì nữa, là một quan điểm

táo bạo tuyệt diệu của thuyết tương đối hẹp. Niuton tự xem mình là một nhà thông thái, cho

rằng có một thời gian toàn năng trôi đi trong toàn bộ vũ trụ. Lorenxơ và Poăngcarê cũng như

vậy. Chính điều đó đã ngăn thiên tài của Anhxtanh cho phép ông hiểu rằng lý thuyết không thể

thành tựu một cách toàn diện và logic triệt để mà không chối bỏ dứt khoát quan niệm thời gian

vũ trụ toàn năng.

Anhxtanh nói chỉ có một thời gian cục bộ. Trên trái đất, chẳng hạn, mỗi vật bay trong không

gian với cùng một vận tốc: như vậy các đồng hồ đều chỉ cùng một "thời gian trái đất", thời gian

địa phương (cục bộ) kiểu như vậy đối với các đối tượng đang vận động giống như trái đất, được

gọi là thời gian đặc thù của đối tượng ấy. Vẫn có những khái niệm tuyệt đối như "trước" và

"sau" (hiển nhiên là không có một nhà du hành vũ trụ nào có thể chết trước khi sinh ra) nhưng

khi các sự kiện cách rất xa nhau thì có những khoảng thời gian liên tục trong đó không thể nói

sự kiện nào xảy ra trước hoặc sau sự kiện nào. Câu trả lời phụ thuộc vào chuyển động của

người quan sát đối với hai sự kiện đó, đương nhiên lời giải thích có được bởi một người quan sát

cũng "nhận thức" như lời giải khác của người quan sát khác. Toàn bộ điều đó với một lôgic vững

chắc suy ra từ hai tiên đề cơ bản của thuyết tương đối hẹp.

Khi khái niệm tính đồng thời mất ý nghĩa thì mất luôn ý nghĩa cả những khái niệm khác. Thời

gian trở thành tương đối bời vì người quan sát khác nhau trong việc đánh giá thời gian xảy ra

giữa hai sự kiện như nhau. Độ dài cũng trở thành tương đối. Độ dài của con tàu đang chuyển

động không thể đo được nếu như không biết chính xác các giới hạn trước và sau của nó ở đâu

vào cùng một thời điểm. Nếu có ai đó báo cáo rằng vào 1 giờ 00 phút giới hạn sau cách nó 1

km tại thời điểm nào đó giữa 12 giờ 59 phút và 1 giờ 01 phút, thì rõ ràng là không có phương

pháp xác định độ dài thực của con tàu này. Khi thiếu một phương pháp như vậy, độ dài của đối

tượng đang chuyển động sẽ phụ thuộc vào việc lựa chọn hệ thống đọc số (tính toán).

Thí dụ, nếu hai con tàu vũ trụ ở trong trạng thái chuyển động tương đối, thì người quan sát tại

mỗi con tàu sẽ nhìn thấy con tàu khác co rút lại theo hướng chuyển động của mình. Với vận tốc

thông thường ,sự co rút đó là cực nhỏ. Trái đất chuyển động xung quanh mặt trời với vận tốc 30

km/giây và đối với người quan sát đứng yên so với mặt trời là cả thảy chỉ vài xăngtimet. Song

khi vận tốc tương đối, sự thay đổi trở nên rất lớn. Thật thú vị biết bao khi chính công thức để

tính độ co rút của Phitxơjeral - Lorenxơ nhằm giải thích thí nghiệm Maikenxơn - Moocly, có thể

được áp dụng ở đây. Trong thuyết tương đối trước đây người ta gọi là sự co rút Lorenxơ -

Phitxơjeral, nhưng hẳn là đã dễ hiểu hơn nếu như nó mang một tên khác, bởi Anhxtanh đã cho

công thức này một cách giải thích hoàn toàn khác.

Đối với Lorenxơ và Phitxơjeral, co rút là sự thay đổi vật chất gây ra bởi áp lực của ngọn gió ête.

Đối với Anhxtanh nó có liên quan tới các kết quả đo đạc. Chẳng hạn, nhà du hành vũ trụ trên

một con tàu vũ trụ đo độ dài của một con tàu khác. Người quan sát trên mỗi con tàu không phát

hiện ra một sự thay đổi nào về độ dài của con tàu riêng biệt hoặc độ dài của các đối tượng bên

trong nó. Song khi đo con tàu khác, họ sẽ tìm thấy rằng nó ngắn hơn. Phitxơjeral vẫn cho rằng

các vật thể chuyển động có "các độ dài đứng yên" tuyệt đối. Khi các vật thể bị co rút, chúng

không lớn hơn độ dài "thực" của mình. Anhxtanh sau khi chối bỏ trường ête đã hiểu khái niệm

độ dài tuyệt đối là vô nghĩa, chỉ còn lại độ dài có được do kết quả đo đạc, và dường như là nó

thay đổi tuỳ thuộc vào vận tốc tương đối của đối tượng và người quan sát.

Các bạn sẽ hỏi làm sao có thể mỗi còn tàu lại ngắn hơn con tàu kia? Không đúng. Lý thuyết

không nói rằng mỗi con tàu ngắn hơn con tàu kia. Nó nói rằng nhà du hành vũ trụ trên mỗi con

tàu khi đó sẽ tìm thấy rằng con tàu khác ngắn hơn. Đó là những việc hoàn toàn khác nhau. Nếu

như hai người theo về hai phía khác nhau của một thấu kính lồi - lõm lớn thì mỗi người sẽ nhìn

thấy người khác bé hơn mình; nhưng đó không phải là điều muốn nói, điều muốn nói là dường

như mỗi người đều nhỏ hơn người khác.

Ngoài những thay đổi kiểu biểu kiến về độ dài có cả những thay đổi biểu kiến về thời gian. Các

nhà du hành vũ trụ trên mỗi con tàu sẽ thấy rằng đồng hồ trên con tàu khác chạy chậm hơn.

Thí nghiệm suy tưởng đơn giản chỉ ra rằng điều đó thực tế là như vậy. Bạn hãy hình dung rằng

bạn nhìn qua một lỗ nhỏ của con tàu vào lỗ hổng của con tàu khác. Cả hai con tàu đều bay gần

nhau với vận tốc không đổi gần với vận tốc ánh sáng.

Tại thời điểm chúng bay qua nhau trên con tàu phát ra chùm sáng từ trần xuống nền, ở đó nó

đổ vào gương và phản xạ lại trần. Bạn sẽ nhìn thấy đường đi của tia sáng đó dưới dạng chữ V.

Nếu như ở bạn có đủ dụng cụ chính xác (tất nhiên những dụng cụ như thế bây giờ không còn),

bạn hẳn có thể ghi lại thời gian cần cho tia sáng đi qua con đường hình chữ V. Chia độ dài cho

thời gian, hẳn bạn sẽ được vận tốc ánh sáng.

Bây giờ, giả sử rằng khi bạn ghi lại thời gian đi qua bởi tia sáng đoạn đường hình chữ V, nhà du

hành ở bên trong con tàu khác cũng làm hệt như vậy. Từ điểm ngắm (quan sát) con tàu của

anh ta là hệ thống đọc số cố định và ánh sáng đơn giản đi về phía dưới và về phía trên dọc theo

cùng một đường thẳng, rõ ràng là đồng thời đi qua khoảng cách ngắn hơn là dọc theo đoạn

đường hình chữ V mà bạn quan sát. Khi anh ta chia khoảng cách đó cho thời gian mà tia sáng

cần để đi về phía dưới và về phía trên, anh ta cũng sẽ được vận tốc ánh sáng. Bởi vì vận tốc

ánh sáng là không đổi đối với mọi người, anh ta sẽ thu được cùng một kết quả về độ chính xác

là 300.000 km/giây. Nhưng nơi anh ta đoạn đường ánh sáng đi qua ngắn hơn. Làm sao kết quả

của anh ta cũng như vậy? Chỉ có một cách giải thích: đồng hồ của anh ta chạy chậm hơn.

Đương nhiên, tình hình đó hoàn toàn đối xứng. Nếu như bạn cho ánh sáng đi về phía dưới và về

phía trên bên trong con tàu của bạn, thì nhà du hành vũ trụ sẽ nhìn thấy con đường của bạn là

hình chữ V. Anh ta sẽ đi đến kết luận rằng đồng hồ của bạn bị chậm.

Có điều là sự thay đổi về độ dài và thời gian được gọi là "biểu kiến" không có nghĩa là không có

một độ dài "thực" hoặc thời gian "thực" mà người quan sát khác nhau "tưởng như là" khác

nhau. Độ dài và thời gian là những khái niệm tương đối. Chúng không có ý nghĩa ngoài sự liên

hệ giữa đối tượng và người quan sát. Vấn đề không phải là có một hệ thống đo đạc "thực", còn

hệ thống khác là "giả". Mỗi hệ thống đều thực đối với người quan sát tiến hành đo đạc đối với

hệ thống đọc số riêng của anh ta. Không thể xem xét một phép đo này là chính xác hơn phép

đo kia. Và tất cả những điều này tuyệt nhiên không phải là ảo giác quang học cần được giải

thích bởi nhà tâm lý học. Các đo đạc có thể được ghi lại bằng các dụng cụ. Chúng không đòi hỏi

sự có mặt của người quan trắc bằng xương bằng thịt.

Khối lượng cũng là một khái niệm tương đối, song chúng ta phải gác lại vấn đề này, vấn đề khác

sang chương tiếp theo.

... Có thể là vũ trụ dường như bị phản chiếu và biến thành một ảo ảnh trong gương, các ngôi

sao đều có khối lượng âm, còn thời gian vũ trụ thì lùi lại. Không một hiện tượng nào trong đó

qua mặt các công thức của thuyết tương đối hẹp...

Thuyết tương đối hẹp - phần II

Độ dài và thời gian, như đã trình bày ở chương trước, đều là những khái niệm tương đối. Nếu

một con tàu vũ trụ khác với một vận tốc không đổi, thì người quan sát trên mỗi con tàu sẽ thấy

rằng các nhà du hành vũ trụ trên con tàu kia gầy nhỏ đi và dịch chuyển chậm hơn. Nếu vận tốc

tương đối của chúng đủ lớn để chuyển dịch của các đồng nghiệp của họ giống như chuyển dịch

của các diễn viên trên màn ảnh chậm dần. Mọi hiện tượng chuyển động có chu kỳ sẽ như chậm

dần: chuyển động của con lắc và vật đối trọng trong đồng hồ, nhịp tim, dao động của nguyên tử

v.v... Theo lời của A. X. Edingtơn, nhà thiên văn học người Anh nổi tiếng, người đã trở thành

một trong những người nối nghiệp hàng đầu và sáng giá nhất của Anhxtanh. Dường như là

thậm chí cả điếu xì gà trên con tàu kia cũng bị teo dần đi. Nhà du hành vũ trụ cao hai mét đứng

trong con tàu đang chuyển động ngang sẽ được nhìn thấy giống như trước là hai mét rưỡi,

nhưng cơ thể của anh ta như mỏng đi theo hướng chuyển động. Còn khi anh ta nằm trải dài

theo hướng chuyển động của con tàu, chiều ngang bình thường của cơ thể anh ta được khôi

phục, nhưng giờ đây sẽ có tình hình là tầm vóc anh ta ngắn lại theo hướng từ đầu đến chân!

Nếu như hai con tàu vũ trụ trên thực tế có thể chuyển động tương đối với nhau với vận tốc đủ

lớn để những thay đổi tương tự thành hiện thực thì mọi khó khăn có thể mang tính kỹ thuật đã

không cho phép người quan sát trên mỗi con tàu nhìn thấy những thay đổi đó. Các nhà văn ưa

thích giải thích thuyết tương đối bằng những thí dụ có hiệu quả được đơn giản hoá. Những minh

họa màu sắc đó không mô tả những thay đổi mà trên thực tế có thể quan sát được hoặc bằng

mắt người hoặc bằng máy móc tân tiến hiện nay. Về sự tồn tại của những thay đổi này, các nhà

du hành vũ trụ có thể nhận biết về nguyên tắc trên cơ sở đo đạc, nếu như có dủ những dụng cu

đo đạc tốt.

Bổ sung sự thay đổi độ dài và thời gian còn có sự thay đổi tương đối của khối lượng. Khối lượng,

nói đại khái, là số đo số lượng vật chất trong cơ thể.

Quả cầu bằng chì hoặc quả cầu bằng gỗ có thể có kích thước như nhau, nhưng quả cầu bằng

chì nặng hơn.

Vật chất tập trung trong đó cao hơn.

Có hai phương pháp đo khối lượng vật thể, hoặc là đem cân lên, hoặc là theo cách thức xem

lực lớn bao nhiêu để truyền cho vật thể đó một gia tốc nhất định. Phương pháp đầu không tốt

lắm, bởi vì kết quả thu được phụ thuộc vào trọng lực tại điểm đã biết.

Quả cầu bằng chì mang lên đỉnh núi cao có trọng lượng nhỏ hơn khi cân nó ở chân núi, mặc dù

khối lượng của nó vẫn đúng như vậy. Trên mặt trăng, trọng lượng của nó nhỏ hơn nhiều so với

trên Trái Đất. Còn trên Sao Mộc trọng lượng dường như còn lớn hơn.

Phương pháp thứ hai đo khối lượng cho kết quả tương tự độc lập với điều là chúng được tiến

hành trên Trái Đất, trên Mặt Trăng hoặc trên Sao Mộc. Song khi sử dụng phương pháp này,

ngay lập tức xuất hiện những vấn đề mới lạ. Muốn dùng phương pháp này để xác định khối

lượng vật thể đang chuyển động, cần đo lực khả dĩ truyền cho nó một gia tốc nhất định, rõ ràng

rằng để lăn một quả đạn pháo cần sức đẩy mạnh hơn là lăn một quả cầu gỗ. Khối lượng đo

bằng phương pháp đó gọi là khối lượng quán tính (g) khác với khối lượng trọng trường hoặc

trọng lượng. Những đo đạc tương tự không thể thực hiện được nếu không đo thời gian và

khoảng cách. Khối lượng quán tính của quả đạn pháo chẳng hạn được biểu thị thông qua đại

lượng lực cần thiết để làm tăng vận tốc của nó (khoảng cách trên một đơn vị thời gian) trên một

đơn vị thời gian là bao nhiêu đấy. Như chúng ta đã thấy trước đây, việc đo thời gian và khoảng

cách thay đổi cùng với sự thay đổi vận tốc tương đối của vật thể và người quan sát, do đó mà

thay đổi cả những kết quả đo khối lượng quán tính.

Trong chương 6, chúng ta sẽ trở lại với khái niệm khối lượng trọng trường và cùng với nó là khối

lượng quán tính. Còn ở đây chỉ nói về khối lượng quán tính thu được do người quan sát đó. Đối

với người quan sát đứng yên so với đối tượng, chẳng hạn đối với các nhà du hành vũ trụ chở voi

trong con tàu vũ trụ, khối lượng quán tính của đối tượng vẫn như vậy độc lập với vận tốc con

tàu. Khối lượng con voi đo được bởi những người quan sát như nhau, được gọi là khối lượng

riêng hoặc khối lượng đứng yên của nó. Khối lượng quán tính của bản thân con voi như vậy đo

được bởi người quan sát nào đó đang chuyển đối với con voi đó (chẳng hạn, bởi người quan trắc

trên trái đất), được gọi là khối lượng tương đối của con voi. Khối lượng đứng yên của vật thể

không bao giờ thay đổi, còn khối lượng tương đối thì thay đổi. Cả hai số đo được là các số đo

của khối lượng quán tính. Trong chương này chỉ nói về khối lượng quán tính: khi sử dụng từ

"khối lượng", cần hiểu nó theo đúng ý nghĩa này.

Cả ba biến số - độ dài, thời gian, khối lượng đều được gộp vào cùng một biểu thức rút gọn

Lorenxơ: căn bậc 2 của 1 - v2/c2.

Độ dài và vận tốc kim đồng hồ thay đổi theo cùng một định luật sao cho công thức cho các đại

lượng này vẫn như vậy. Đồng thời khối lượng và độ dài của các khoảng thời gian thay đổi theo

các định luật đảo ngược, và điều đó có nghĩa là công thức ở đây cần viết như sau: 1/ căn bậc 2

của (1 - v2/c2).

Khối lượng của bất kỳ vật thể đo được bởi người quan trắc đang chuyển động đều đối với vật thể

ấy, thu được bằng cách nhân khối lượng đứng yên của vật thể với biểu thức dẫn ra ở trên (ở

đây v là vận tốc tương đối của đối tượng: c là vận tốc ánh sáng).

Thí dụ, nếu vận tốc tương đối của hai con tàu vũ trụ bằng 260.000 km/giây, người quan sát trên

mỗi con tàu sẽ cho rằng con tàu khác ngắn đi một nửa, đồng hồ trên đó chạy chậm hơn hai lần,

thời gian một giờ dài gấp đôi và khối lượng con tàu cũng lớn gấp đôi. Tất nhiên, những nhà du

hành vũ trụ này trên con tàu riêng của mình sẽ thấy mọi thứ đều bình thường, nếu như các con

tàu này có thể đạt tới vận tốc tương đối bằng với vận tốc ánh sáng người quan trắc trên mỗi con

tàu hẳn đã cho rằng con tàu kia đã co rút độ dài của mình đến số không, còn khối lượng là vô

cùng và thời gian trên con tàu kia chậm đủ mức dựng lại hoàn toàn!

Nếu như khối lượng quán tính không thay đổi theo cách thức nói trên thì tác động không ngừng

của lực như vậy, chẳng hạn như lực của động cơ tên lửa hẳn có thể duy trì được sự tăng tốc

của con tàu cho tới khí vận tốc này không vượt quá vận tốc ánh sáng. Nhưng điều đó sẽ không

xảy ra, bởi vì tùy mức độ con tàu chuyển động càng nhanh lên (chẳng hạn, từ điểm ngắm của

người quan trắc), khối lượng tương đối của nó ngày càng tăng lên theo một tỷ lệ trong đó độ

dài của nó giảm đi và thời gian chậm laị. Khi con tàu co rút lại bằng một phần mười độ dài ban

đầu, khối lượng tương đối của nó sẽ tăng lên 10 lần. Nó tạo ra phản lực lớn gấp 10 lần đối với

động cơ tên lửa: như vậy đòi hỏi một lực lớn gấp mười lần so với trường hợp con tàu đứng yên,

nhằm bảo đảm cùng một sự tăng tốc. Không bao giờ có thể đạt tới được vận tốc ánh sáng. Ví

thử có đạt được thì người quan sát bên ngoài đã mục kích con tàu co rút độ dài của nó bằng

không, khối lượng sẽ lớn vô cùng, còn động cơ tên lửa sẽ hoạt động với lực đẩy cực lớn. Các

nhà du hành vũ trụ trong con tàu sẽ không thể nào phát hiện được điều này thay đổi gì, song

dường như họ nhìn thấy tất cả trong vũ trụ đang bị bỏ lại phía sau với vận tốc ánh sáng, thời

gian vũ trụ bị dừng lại, mỗi vì sao dẹt như một cái đĩa và khối lượng thì lớn vô cùng.

Chỉ những tác giả của các chuyện khoa học - viễn tưởng mới có đủ dũng cảm suy tưởng về đề

tài rằng các nhà du hành vũ trụ có thể bắt gặp bằng cách nào đó hiện tượng xuyên thủng rào

cản ánh sáng. Có thể là vũ trụ dường như là bị phản chiếu và biến thành một ảo ảnh trong

gương, các ngôi sao đều có khối lượng âm, còn thời gian vũ trụ thì lùi lại. Không một hiện tượng

nào trong đó qua mặt các công thức của thuyết tương đối hẹp. Nếu vận tốc ánh sáng vượt trội,

các công thức này cho các giá trị độ dài, thời gian và khối lượng, như các nhà toán học thường

nói, là những "số ảo" - những số có căn bậc hai của -1, ai biết được?

Phải chăng con tàu đi qua rào cản ánh sáng bay thẳng đến vương quốc của nhà phù thuỷ Gutvin

đây!

Dù hiểu ra rằng không cái gì có thể đuổi kịp vận tốc ánh sáng, những sinh viên mới bắt đầu

nghiên cứu thuyết tương đối thường đãng trí đề cập đến những vận tốc vượt hơn vận tốc ánh

sáng. Để hiểu rõ rằng trong trường hợp này đối với thuyết tương đối tốt hơn cả là nên đưa vào

thuật ngữ "hệ thống đọc số quán tính" trước đây các tác giả của các công trình về thuyết tương

đối thường gọi nó là "hệ thống quán tính" hay là "hệ thống Galilê". Khi có một vật thể bất kỳ tựa

hồ một con tầu vũ trụ chuyển động đều, thì người ta nói rằng vật thể đó và tất cả những đối

tượng khác chuyển động cùng với nó theo hướng và vận tốc (ví dụ, các đối tượng bên trong con

tàu) liên quan với cùng một hệ thống đọc số quán tính. (Hệ thống đọc số quán tính là hệ thống

toạ độ Đêcác mà con tàu vũ trụ đó có liên quan). Ở ngoài sự liên quan với hệ thống đọc số

quán tính, thuyết tương đối hẹp không thích dụng nữa và có nhiều khả năng quan sát vận tốc

vượt trên vận tốc ánh sáng .

Giả dụ chúng ta xem xét một trường hợp đơn giản như sau. Một con tàu vũ trụ chuyển động với

vận tốc bằng 3/4 vận tốc ánh sáng, bay qua bên trên các bạn và theo chính hướng đông. Cũng

tại thời điểm này một con tàu vũ trụ khác chuyển động cũng với vận tốc đó bay bên trên các

bạn, thẳng hướng tây. Trong hệ thống đọc số của các bạn có liên quan đến hệ thống đọc số

quán tính của trái đất, hai con tàu này bay sát bên nhau với vận tốc tương đối bằng một lần

rưỡi vận tốc ánh sáng. Chúng tiến gần với vận tốc đó và tách xa nhau cũng với vận tốc đó.

Không có điều gì trong thuyết tương đối cấm kỵ điều đó. Song thuyết tương đối hẹp đòi hỏi rằng

nếu bạn bay trên một con tàu, thì sau khi tính vận tốc tương đối của những con tàu đó, bạn sẽ

thấy được trị số nhỏ hơn vận tốc ánh sáng.

Chúng ta vận dụng các khả năng để tránh phải áp dụng công cụ toán học của thuyết tương đối

trong cuốn sách này, nhưng theo công thức rút ngắn Lorenxơ, công thức cho dưới đây quá đơn

giản miễm phải nêu ra. Nếu x là vận tốc của một con tàu đối với trái đất, còn y là vận tốc của

con tàu khác, đối với trái đất, thì vận tốc của các con tàu này đối với nhau, như nó được hình

dung từ trái đất, tất nhiên sẽ bằng x + y. Nhưng tại vị trí của người quan sát trong con tàu nào

đó; chúng ta cần phải cộng vận tốc theo công thức sau đây: (x + y)/ (1 + xy/c2)

Trong công thức này c là vận tốc ánh sáng. Dễ dàng thấy rằng khi vận tốc con tàu là nhỏ so với

vận tốc ánh sáng, công thức này cho kết quả thu được khi cộng hai vận tốc theo cách thông

thường. Nhưng nếu vận tốc của con tàu là rất lớn, công thức này cho một kết quả hoàn toàn

khả quan. Ta hãy lấy một trường hợp giới hạn và giả thiết rằng thay vì các con tàu vũ trụ, có hai

tia sáng đi qua bên trên chúng ta theo hướng ngược. Người quan sát trên mặt đất sẽ nhìn thấy

chúng bay tách nhau với vận tốc 2c, tức là với vận tốc gấp đôi vận tốc ánh sáng. Nhưng nếu

như nó chuyển động cùng với một trong những tia đó, thì sau khi tách vận tốc tương đối phù

hợp với công thức đã dẫn ở trên nó sẽ thu được: (c + c)/(1 + c2/c2) tất nhiên sẽ đạt tới trị số

bằng với c.

Nói khác đi, nó sẽ bắt gặp tia sáng khác chuyển động từ nó với vận tốc ánh sáng.

Giả sử tia sáng đi qua trên đầu chúng ta tại thời điểm con tàu vũ trụ chuyển động theo hướng

ngược với vận tốc x.

Trong hệ thống đọc số quan tính của trái đất, con tàu và ánh sáng đi qua sát bên nhau với vận

tốc c + x. Bạn đọc có thể hài lòng sau khi tính trị số vận tốc ánh sáng thu được nếu đo nó trong

hệ thống đọc số quán tình có liên quan đến con tàu vũ trụ. Tất nhiên kết quả lại thu được là c.

Ngoài phạm vi hoạt động của thuyết tương đối hẹp có liên quan chỉ với hệ thống quán tính, vẫn

còn có thể nói về vận tốc ánh sáng như về một giới hạn tuyệt đối nào đó. Song giờ đây cần thể

hiện điều đó theo cách khác: không có một phương pháp nào cho phép phát tín hiệu từ một thể

vật chất đến một vật thể khác với vận tốc vượt quá vận tốc ánh sáng. Khái niệm "tín hiệu" ở đây

được sử dụng theo nghĩa rộng của từ này. Nó bao gồm mọi dạng quan hệ nhân - quả, cho phép

truyền thông tin bằng bất kỳ dạng năng lượng nào, ví như năng lượng sóng âm, sóng điện từ,

sóng va đập ở dạng thể rắn v.v... Không thể phát thông tin lên Sao Hoả với vận tốc vượt quá

vận tốc ánh sáng. Không thể làm được điều là viết một bức thư và gửi vào tên lửa, bởi vì như

chúng ta thấy trước đây, vận tốc tương đối của tên lửa luôn luôn nhỏ hơn vận tốc ánh sáng. Nếu

thông tin được mã hoá và gửi qua radio hoặc rada, thì nó sẽ đến được với vận tốc ánh sáng.

Không có dạng năng lượng nào khác có thể bảo đảm việc chuyển tải nhanh hơn mã này.

Mặc dù các tín hiệu không thể truyền đi với vận tốc vượt qua vận tốc ánh sáng, nhưng có thể

quan trắc các dạng chuyển động nhất định có quan hệ với người quan trắc, mà vận tốc lớn hơn

vận tốc ánh sáng. Bạn thử tưởng tượng một cái kéo khổng lồ mà lưỡi kéo chạm tới hành tinh

Hải Vương. Cái kéo bắt đầu khép với vận tốc không đổi. Theo diễn giải, tại điểm các mép kéo

cắt nhau, sẽ có sự chuyển động tới đầu mút kéo với vận tốc tăng dần lên. Bạn hãy tưởng tượng

ban đang ngồi tại trục bất động chốt hai lưỡi kéo. So với hệ thống đọc số quán tính của bạn,

giao điểm này của hai lưỡi kéo sẽ xa dần bạn với vận tốc lớn hơn vận tốc ánh sáng. Tất nhiên ở

đây xuất hiện chuyển động không phải của vật thể vật chất mà là của một điểm hình học.

Có thể trong đầu bạn nảy ra một ý nghĩ như sau: giả sử vòng kéo ở tại trái đất, còn giao điểm

của hai lưỡi kéo ở tận sao Hai vương. Nếu như bạn khép nhẹ cái kéo lại, sau đó lại mở ra, lập

lại các động tác đó nhiều lần, thì giao điểm sẽ chuyển dịch về phía trước - phía sau. Bây giờ có

phải không thể đánh tín hiệu tới sao Hải Vương chỉ trong nháy mắt được không? Không thể, bởi

vì sung lượng dẫn đến chuyển động lưỡi kéo cần được truyền lại từ phân tử này đến phân tử

khác, còn vận tốc của quá trình này phải nhỏ hơn vận tốc ánh sáng. Trong thuyết tuyệt đối tổng

quát không có vật thể cứng tuyệt đối. Trái lại bạn có thể lấy một trục cũng trải dài từ Trái Đất

đến sao Hải Vương và truyền thông tin trong nháy mắt trong khi truyền động một đầu. Không có

phương pháp cho phép sử dụng cái kéo khổng lồ hoặc bất kỳ một dạng nào khác được gọi là

các đối tượng vượt quá vận tốc ánh sáng.

Nếu như hướng tia sáng của chiếc đèn chiếu lên màn ảnh có đủ độ lớn và độ xa, thì có thể

trong khi quay đèn chiếu, phải làm sao cho vết dấu trên màn ảnh sẽ chuyển động theo với nó

nhanh hơn ánh sáng. Ở đây lại không có một đối tượng vật chất nào chuyển động, thực ra đó là

chuyển động ảo. Nếu hướng đèn chiếu vào khoảng không và bắt đầu quay nó, thì các phần tia

sáng ở xa sẽ toả vào không gian với vận tốc lớn hơn vận tốc ánh sáng nhiều. Ở chương 5 sẽ

trình bày có thể coi trái đất là hệ thống đọc số không quay. Từ điểm ngắm này, vận tốc quay

của các ngôi sao quanh trái đất sẽ lớn hơn vận tốc ánh sáng nhiều. Như một nhà thiên văn học

đã nhận xét, ngôi sao cách xa chỉ 10 năm ánh sáng có vận tốc vòng đối với trái đất vượt vận tốc

ánh sáng 20 ngàn lần. Với phương pháp hình học này để khắc phục rào cản ánh sáng thậm chí

không cần theo dõi các ngôi sao. Bằng cách quay cần đà, cậu bé có thể thông báo cho mặt trời

vận tốc vòng (theo hệ thống toạ độ liên quan tới cần đà), một vận tốc lớn hơn vận tốc ánh sáng

nhiều, tức lớn hơn 300 000 km/giây.

Chương 10 nói rằng theo một thuyết phổ biến về vũ trụ các thiên hà ở xa có thể tách xa trái đất

với vận tốc vượt quá vận tốc ánh sáng. Không một thí dụ nào mâu thuẫn với điều khẳng định

rằng vận tốc ánh sáng là rào cản khi đánh tín hiệu từ một thể vật chất tới một thể vật chất

khác.

Một hệ quả quan trọng của thuyết tương đối hẹp mà chúng ta sơ bộ đề cập, là trong những

điều kiện nhất định năng lượng chuyển thành khối lượng, còn trong những điều kiện khác thì

khối lượng lại trở thành năng lượng. Trước đây các nhà vật lý học cho rằng số lượng đầy đủ của

khối lượng trong vũ trụ không bao giờ thay đổi và rằng số lượng đầy đủ của năng lượng cũng

không bao giờ thay đổi. Điều đó được biểu thị bởi các định luật "bảo toàn khối lượng" và "bảo

toàn năng lượng". Bây giờ cả hai định luật này đều thống nhất vào một định luật đơn giản là

"bảo toàn khối lượng - năng lượng".

Khi các động cơ tên lửa làm tăng tốc con tàu vũ trụ, một phần năng lượng làm tăng khối lượng

tuyệt đối của con tàu. Khi năng lượng thông báo cho bình cafe bằng cách khiến nó sôi (đồng

thời các phân tử của nó cũng tăng lên) lượng chứa bên trong bình cafe trên thực tế có tăng hơn

trước ít nhiều. Khi bình cafe nguội đi, khối lượng của nó giảm đi. Khi vặn đồng hồ chúng ta

truyền cho nó một năng lượng. Khi thôi vặn, đồng hồ bị mất đi phần khối lượng này. Sự tăng,

giảm khối lượng là nhỏ vô cùng, đến nỗi không hề nhận biết được trong các điều kiện tính toán

vật lý thông thường. Nhưng sự biến đổi đó của khối lượng thành năng lượng hoàn toàn không

phải nhỏ, xem chuyện nổ bom hạt nhân thì thấy rõ!

Vụ nổ bom chính là sự biến đổi chớp nhoáng một phần khối lượng vật chất của bom thành năng

lượng. Năng lượng bức xạ bởi mặt trời cũng có nguồn gốc tương tự. Do trọng lực lớn trên mặt

trời, khí Hyđro trong đó bị áp lực cực lớn và bị đốt nóng đến một nhiệt độ cao khiến các nguyên

tử Hyđro tổng hợp lại biến thành Heli. Trong quá trình này một phần của khối lượng biến thành

năng lượng. Công thức biểu thị tương quan giữa khối lượng và năng lượng, như được biết hiện

nay là: e = mc bình phương, trong đó e là năng lượng, m là khối lượng, c bình phương vận tốc

ánh sáng. Anhxtanh có được công thức này từ thuyết tương đối hẹp. Từ công thức này, rõ ràng

rằng với một khối lượng cực nhỏ có thể giải phóng một năng lượng cực lớn. Cuộc sống trên trái

đất không thể tồn tại nếu không có năng lượng mặt trời, nên quả là không có gì là quá đáng khi

nói cuộc sống phụ thuôc vào công thức này. Cũng có thể cho rằng sự kết thúc cuộc sống trên

trái đất cũng liên quan tới công thức này. Sẽ không phải là phóng đại khi nói rằng biết hiệu

chỉnh yếu tố kinh hoàng được biểu thị bởi công thức đơn giản đó là một vấn đề quan trọng bậc

nhất trong số những vấn đề đặt ra trước loài người ở mọi thời đại.

Song bom chỉ là một trong nhiều sự kiện gây ấn tượng nhất xác nhận thuyết tương đối hẹp.

Các chứng minh bằng thực nghiệm bắt đầu được tích luỹ khi bài báo của Anhxtanh viết vào năm

1905 vừa ráo mực và bây giờ nó đã trở thành một trong những hoc thuyết vĩ đại nhất của vật lý

học hiện đại. Hằng ngày nó vẫn được khẳng định trong các phòng thí nghiệm của các nhà bác

học nguyên tử làm việc với các hạt cơ bản chuyển động với các vận tốc gần với vận tốc ánh

sáng. Các hạt cơ bản tương tự chuyển động càng nhanh bao nhiêu, lực càng lớn bấy nhiêu, lực

càng lớn bấy nhiêu để có thể làm tăng vận tốc của chúng đến một trị số đã cho; nói khác đi là

khối lượng tương đối của chúng càng lớn bấy nhiêu. Chính là do nguyên nhân đó mà các nhà

vật lý chế tạo những máy móc ngày càng lớn để gia tốc các hạt cơ bản. Cũng cần cả những

trường ngày càng mạnh hơn nhằm khắc phục khối lượng các hạt phát triển tuỳ thuộc vào điều là

vận tốc của chúng trở thành ngày càng gần với vận tốc ánh sáng. Hiện nay các điện tử có thể

gia tốc đến vận tốc 0, 999999999 vận tốc ánh sáng. Đồng thời mỗi điện tử đều có khối lượng

(đối với hệ thống đọc số quán tính của trái đất) lớn hơn đối tượng đứng yên của chúng khoảng

40 ngàn lần.

Khi một hạt cơ bản nào đó chạm với một phản hạt (tức loại hạt có cấu trúc hệt như vây, nhưng

mang điện tích âm) thì sẽ xuất hiện triệt tiêu hoàn toàn.

Toàn bộ khối lượng của cả hai hạt cơ bản hoàn toàn biến thành năng lượng bức xạ. Trong

phòng thí nghiệm quá trình này chỉ diễn ra với những hạt cơ bản đơn lẻ. Nếu đến một lúc nào

đó các nhà vật lý tạo ra được phản vật chất (loại chất cấu thành từ các phản hạt), thì họ có thể

đạt tới giới hạn trong việc sử dụng năng lượng nguyên tử. Một số lượng không lớn lắm các phản

vật chất trên con tàu vũ trụ được duy trì bởi các từ trường trong tình trạng căng lên, có thể

thống nhất một chút, bảo đảm cho con tàu lực chuyển động đủ để đưa chúng ta lên tới các vì

sao.

Thuyết tương đối hẹp được xác nhận đầy đủ bằng thực nghiệm, khiến giờ đây khó có thể tìm

thấy nhà vật lý nào nghi ngờ về tính chính xác của thuyết này.

Chuyển động đều là tương đối. Nhưng trước khi có thể nói rằng bất kỳ chuyển động nào cũng là

tương đối, cần phải khắc phục trở ngại cuối cùng: đó là quán tính. Cái gì là trở ngại đây và

Anhxtanh đã khắc phục nó như thế nào sẽ được miêu tả ở chương 5.

Thuyết tương đối tổng quát ^

Tại chương 2 chúng ta đã chỉ ra rằng có hai cách phát hiện chuyển động tuyệt đối: đo chuyển

động so với chùm sáng và sử dụng hiện tượng quán tính xuất hiện khi tăng tốc đối tượng. Thí

nghiệm Maikenxon - Moocly chỉ ra rằng, cách thứ nhất không hiệu quả. Vả lại thuyết tương đối

hẹp của Anhxtanh đã giải thích nguyên nhân. Tại chương này chúng ta quay về phương pháp

thứ hai: sử dụng hiện tượng quán tính như chìa khoá đối với chuyển động tuyệt đối.

Khi con tàu vũ trụ tăng tốc, nhà du hành bên trong con tàu bị ép rất mạnh vào lưng ghế. Hiện

tượng quán tính thường gọi là gây ra bởi gia tốc của tên lửa. Phải chăng hiện tượng đó chứng tỏ

rằng tên lửa đang chuyển động? Để chứng minh tính chất tương đối của mọi chuyển động bao

gồm cả chuyển động có gia tốc, cần phải làm sao cho có thể lấy tên lửa làm hệ thống đọc số cố

định. Trong trường hợp này trái đất và toàn bộ khoảng không vũ trụ sẽ dường như chuyển động

về phía sau ngược với tên lửa. Nhưng sau khi xem xét tình hình tạo ra từ điểm ngắm đó, có thể

giải thích được lực tác động vào nhà du hành vũ trụ được không? Lực ép anh ta vào lưng ghế

cho thấy không nghi ngờ gì nữa rằng tên lửa đang chuyển động chứ không phải là vũ trụ.

Một chứng tỏ khác là trái đất đang quay. Lực li tâm, hiện tượng quán tính, đi kèm sự quay đều

kéo căng xích đạo của trái đất khiến cho trái đất dẹt lại. Nếu như chuyển động bất kỳ là tương

đối thì phải chăng không thể chấp nhận Trái Đất làm hệ thống đọc số cố định và coi vu trụ quay

xung quanh nó? Tất nhiên có thể hình dung điều đó, nhưng còn việc xích đạo Trái Đất căng ra?

Sự căng này chỉ ra rằng bản thân trái đất đang quay, chứ không phải là vũ trụ. Lại nữa, các nhà

thiên văn vẫn chưa thỏa thuận là các lực li tâm căng ra và bây giờ xích đạo trái đất hoặc sức

căng xuất hiện trong các thời đại địa chất trước đây khi vật chất của trái đất còn đàn tính, còn

bây giờ đã bộc lộ nét điển hình của một trái đất cũng là đặc trưng đang được bảo toàn, thậm

chí trái đất sẽ ngừng quay. Song tất cả đều đồng ý rằng lực li tâm đáp ứng với sự căng ra này.

Những suy nghĩ khiến Niutơn cho rằng chuyển động không phải là tương đối chính là như vậy.

Ông đi đến chứng minh sự kiện rằng khi thùng nước quay xung quanh trục thẳng đứng, lực li

tâm làm căng mặt nước và thậm chí có thể làm toé nước qua mép thùng. Không thể hình dung

rằng vũ trụ quay có thể ảnh hưởng đến nước, do đó Niutơn khẳng định cần thừa nhận rằng sự

quay của thùng nước là tuyệt đối.

Trong thời gian 10 năm sau khi công bố thuyết tương đối hẹp, Anhxtanh đã suy nghĩ nhiều về

sự việc này. Đa số các nhà vật lý không xem nó là nhiệm vụ nói chung. Họ nói tại sao chuyển

động đều lại không phải là tương đối (như thuyết tương đối hẹp xác nhận điều đó) còn chuyển

động có gia tốc lại là tuyệt đối. Tình hình như vậy đã không làm Anhxtanh yên tâm. Ông cảm

thấy rằng nếu chuyển động không đều là tương đối thì chuyển động có gia tốc cũng phải là như

vậy. Cuối cùng vào năm 1916, 11 năm sau khi sáng tạo thuyết tương đối hẹp, ông đã cho công

bố thuyết tương đối tổng quát (rộng). Thuyết tương đối này gọi là tổng quát, bởi vì nó là tổng

hợp, mở rộng của thuyết tương đối hẹp. Nó bao gồm cả thuyết tương đối hẹp như một trường

hợp riêng biệt.

Thuyết tương đối tổng quát là một thành tựu khoa học lớn lao hơn thuyết tương đối hẹp rất

nhiều. Nếu như không phải là Anhxtanh lần đầu tiên xây dựng nên thuyết tương đối hẹp, thì

không nghi ngờ gì nữa rằng thuyết này chẳng bao lâu cũng sẽ được các nhà vật lý khác xây

dựng. Poăngcarê là một trong những người đã gần như tiến đến sát nút. Trong bài phát biểu

nổi tiếng của mình vào năm 1904, Poăngcarê đã tiên đoán về sự xuất hiện của "môn cơ học

hoàn toàn mới", trong đó không một vận tốc nào có thể đạt tới vận tốc ánh sáng, giống như

không một nhiệt độ nào có thể hạ xuống dưới số không độ tuyệt đối. Ông nói sẽ xác lập được

nguyên lý của tính tương đối , theo đó định luật của các hiện tượng vật lý phải như nhau, độc

lập với điều mà người quan sát đứng yên hoặc đang chuyển động thẳng đều; chúng ta sẽ không

có phương pháp phân biệt chúng ta đang ở trong trạng thái yên tĩnh hay đang chuyển động như

vậy". Poăngcarê không nhìn thấy bước quyết định cần phải làm để thực hiện chương trình đó,

nhưng ông đã bằng trực giác hiểu được bản chất của thuyết tương đối hẹp. Thời gian đó,

Anhxtanh còn chưa nhận thức được tư duy của Poăngcarê, Lorenxơ và những người khác đã

gần gũi với tư duy của ông như thế nào. Ít năm sau, ông đã đặc biệt đánh giá cao đóng góp

xuất sắc của những nhà khoa học này.

Với thuyết tương đối tổng quát, tình hình hoàn toàn khả quan. Theo cách diễn đạt của Telơ, nó

là một "bất ngờ tuyệt diệu"; một sự độc đáo như vậy, một sự phi phàm như vậy đã gây ra trong

thế giới khoa học một cái gì đó giống như đã xảy ra trong các sàn nhảy của Mỹ khi vào năm

1962, có sự du nhập một điệu nhảy mới, lạ lẫm. Anhxtanh đã thay đổi các tiết tấu xưa cũ của

điệu nhảy thời gian và không gian. Trong một thời gian rất ngắn, mỗi nhà vật lý học hoặc đã

nhảy một điệu tuýt mới mà không che dấu nỗi thảng thốt đang bủa vây mình hoặc tiếc nuối cái

cũ đang ngăn cản việc học tập điệu nhảy mới. Nếu như Anhxtanh không được sinh ra thì không

nghi ngờ gì nữa rằng những nhà bác học khác hẳn đã cung cấp cho vật lý học một điệu tuýt như

vậy, nhưng có thể phải mất 100 năm hoặc lâu hơn nữa. Trong lịch sử khoa học, ít có những học

thuyết đặt nên móng như vậy lại là sự nghiệp của một người.

"Niutơn, hay tha lỗi cho tôi". Anhxtanh đã viết vào cuối đời. Ở thời đại của mình, ông đã tìm ra

con đường duy nhất là giới hạn của bộ óc vĩ đại nhất và năng lượng sáng tạo có thể có" đối với

con người". Đó là báu vật của sự kính trọng của nhà bác học thiên tài trong thời đại chúng ta

đối với bậc tiền bối thiên tài của mình .

Cái lõi trung tâm của thuyết tương đối tổng quát của Anhxtanh là cái gọi là nguyên lý tương

đương.

Nguyên lý tương đương không phải cái gì khác là sự khẳng định đáng ngạc nhiên rằng trọng lực

và quán tính cũng thế cả thôi (Niutơn chắc hẳn, phải xem Anhxtanh là người mất trí). Điều đó

không giản đơn là hiện tượng giống nhau. Trọng lực và quán tính là hai từ khác nhau đối với

cùng một hiện tượng.

Anhxtanh không phải là nhà bác học đầu tiên bị chinh phục bởi sự trùng hợp kỳ lạ giữa các hiện

tượng trọng lực và quán tính. Chúng ta cũng hình dung rằng một quả đạn pháo và một quả cầu

gỗ nhỏ rơi cùng một độ cao. Giả sử trọng lượng của quả đạn lớn gấp 100 lần quả cầu gỗ. Điều

đó có nghĩa là trọng lực tác động vào quả đạn lớn gấp 100 lần lực tác động vào quả cầu gỗ. Dễ

dàng hiểu nguyên do mà kẻ thù của Galilê đã không thể tin rằng các quả cầu này đều đạt tới

trái đất cùng một lúc. Ngày nay, tất nhiên chúng ta đều biết rằng nếu bỏ qua lực cản của không

khí thì các quả cầu sẽ rơi cùng nhau. Để giải thích hiện tượng này Niutơn phải giả thiết một điều

gì đó rất táo bạo. Ở mức độ trọng lực kéo quả đạn xuống dưới thì quán tính của quả đạn và lực

cản đã giữ nó lại. Trên thực tế trọng lực tác động vào quả đạn lớn gấp 100 lần so với tác động

vào quả cầu gỗ, song lực quán tính giữ lại quả đạn cũng mạnh hơn đúng 100 lần.

Các nhà vật lý thường diễn đạt điều đó bằng những lời lẽ khác. Trọng lực tác động vào đối

tượng luôn luôn tỉ lệ với khối lượng quán tính của đối tượng đó. Nếu đối tượng A nặng gấp đôi

đối tượng B, lực quán tính của nó cũng lớn gấp đôi. Cần có lực lớn gấp đôi để tăng tốc đối

tượng A đạt tới vận tốc cuối cùng giống như của đối tượng B. Nếu không như vậy, thì các vật

trọng lượng khác nhau hẳn sẽ rơi với các gia tốc khác nhau.

Để dễ dàng hình dung ra một thế giới mà ở đó không có tính tỉ lệ giữa các lực này (lực quán

tính và lực hấp dẫn). Và trên thực tế vào các thời kỳ từ Aristor đến Galilê, các nhà bác học đã

hình dung ra một thế giới đúng như vậy! Chúng ta cảm thấy rất lạc quan trong một thế giới như

vậy. Bị thay đổi điều kiện trong thang máy hạ xuống, nhưng lại dường như không cảm nhận là

đang ở trong đó. Dù ở đó như thế nào chúng ta đều có hạnh phúc được sống trong một thế giới

mà hai lực này tỷ lệ với nhau. Lần đầu tiên Galilê đã chứng minh điều đó. Các thí nghiệm chính

xác cực kỳ khẳng định phát minh của Galilê đã được thực hiện khoảng năm 1900 bởi nhà vật lý -

nam tước Hung Rolan Phon Etves. Việc kiểm tra toàn diện chính xác nhất cũng đã được thực

hiên mấy năm sau đó bởi một nhóm nhà bác học thuộc trường Đại học Prinxton. Với độ chính

xác mà họ có thể đạt được, khối lượng trọng trường (trọng lượng) luôn luôn tỷ lệ với khối lượng

quán tính.

Tất nhiên, Niutơn biết về mối quan hệ giữa trọng lực và quán tính: mối quan hệ buộc mọi vật

đều rơi với gia tốc như nhau, nhưng ông đã không giải thích được. Đối với ông, mối quan hệ đã

dường như là sự trùng lặp ngẫu nhiên. Do sự trùng hợp như vậy có thể lợi dụng quán tính bằng

cách làm cho trường trọng lực (trọng trường) xuất hiện và biến mất. Ở chương đầu tiên đã đề

cập đến trường trọng lực nhân tạo có thể tạo ra trong con tàu vũ trụ có dạng hình trụ bằng

cách quay con tàu như bánh xa. Lực li tâm sẽ ép vật vào mép ngoài. Khi con tàu quay với vận

tốc không đổi xác định có thể có được báo trong con tàu một trường lực quán tính với tác động

giống như trường trọng lực của trái đất. Nhà du hành vũ trụ đang dạo chơi sẽ cảm nhận như

trên một sàn cong. Các vật thể ném ra sẽ rơi xuống sàn đó. Khói sẽ toả lên trên trần. Mọi hiện

tượng sẽ giống hệt như ở trọng trường bình thường. Để minh hoạ tình hình đó Anhxtanh đã đề

xuất một thí nghiệm lý thuyết như sau.

Bạn thử tưởng tượng trong vũ trụ có một cái thang máy chuyển dịch lên phía trên với vận tốc

tăng không ngừng. Nếu gia tốc không đổi và với độ chính xác bằng gia tốc rơi xuống trái đất của

vật thể, thì con người bên trong thang máy sẽ cảm thấy giống như tại trọng trường với độ chính

xác bằng ở trái đất. Bằng phương pháp này có thể không chỉ mô hình hoá trọng lực mà còn

trung tính hoá nó. Trong thang máy đi xuống, ví dụ như vậy, gia tốc đi xuống triệt tiêu hoàn

toàn ảnh hưởng của trọng lực bên trong cabin. Trạng thái với g = 0 (vắng lực hấp dẫn) tồn tại

bên trong con tàu vũ trụ suốt thời gian nó ở trạng thái rơi tự do, tức khi nó chuyển động chỉ

dưới tác động của trọng lực. Trạng thái không trọng lượng mà các nhà du hành vũ trụ Liên Xô

và Mỹ cảm nhận được trong các chuyến bay vòng quanh trái đất được giải thích rằng các con

tàu của họ ở trong trạng thái rơi tự do trong khi bay vòng quanh trái đất. Toàn bộ thời gian khi

động cơ tên lửa của con tàu vũ trụ hoạt động, bên trong con tàu sẽ có trạng thái với g = 0.

Sự tương quan nổi tiếng giữa trọng lượng và quán tính vẫn chưa giải thích được cho đến khi

Anhxtanh còn chưa sáng tạo ra thuyết tương đối tổng quát. Cũng giống như trong thuyết tương

đối hẹp, ông đã đề xuất một giả thiết đơn giản nhất, táo bạo nhất. Bạn hãy nhớ lại rằng trong

thuyết tương đối hẹp, Anhxtanh đã nhận định rằng nguyên nhân không thấy được ngọn gió ête

là ở chỗ không có một ngọn gió ête nào cả.

Trong thuyết tương đối tổng quát ông đã nói: trọng lực và quán tính cũng như nhau cả thôi bởi

vì chúng là một.

Thật là không đúng khi nói rằng bên trong của các thang máy rơi tự do lực hút của trái đất là

trung tính. Lực hút (lực hấp dẫn) không hề trung tính, nó bị triệt tiêu thôi. Lực hút trên thực tế

bị biến mất. Tương tự như vậy cũng không đúng khi nói rằng lực hấp dẫn trong con tàu vũ trụ

đang quay hoặc trong thang máy đang đi lên là mô hình hoá được. Chính trong trường hợp này

lực hấp dẫn không mô hình hoá được, nó được tạo ra bởi phương pháp đó có hình dạng toán

học khác so với trường trọng lực bao quát các thiên thể lớn như trái đất chẳng hạn, nhưng ít ra

đó là trường trọng lực thông thường. Giống như trong thuyết tương đối hẹp, sự mô tả toán học

giới tự nhiên trở nên phức tạp trong thuyết tương đối tổng quát, song cuối cùng cũng làm rõ sự

phức tạp ấy. Thay vì hai lực khác nhau chỉ còn lại một lực. Thêm nữa, lý thuyết cũng dẫn đến

một dự báo mới có thể kiểm tra bằng thực nghiệm.

Nguyên lý tương đương của Anhxtanh tương đương của lực hấp dẫn và lực quán tính cho phép

xem xét mọi chuyển động trong đó có cả chuyển động với gia tốc đều là tương đối, khi thang

máy tưởng tượng của Anhxtanh với gia tốc tăng lên chuyển động trong vũ trụ, bên trong nó có

thể quan sát các hiện tượng quán tính. Nhưng về mặt lý thuyết có thể xem thang máy là một hệ

thống đọc số cố định. Khi đó toàn bộ vũ trụ cùng với tất cả các thiên hà của nó dường như

chuyển động về phía dưới gần với thang máy với vận tốc tăng lên. Chuyển động có gia tốc này

của vũ trụ tạo ra một trường trọng lực buộc mọi vật thể trong thang máy ép vào sàn. Có thể nói

rằng các hiện tượng này không phải là quán tính mà là trọng lực.

Nhưng trên thực tế chuyện gì sẽ xảy ra. Thang máy chuyển động và chuyển động của nó tạo ra

hiện tượng quán tính, hoặc là vũ trụ chuyển động đồng thời tạo ra trọng trường? Đó là một câu

hỏi không đúng. Không hề có một chuyển động "thực", tuyệt đối nào, chỉ có sự tồn tại tương đối

của thang máy và vũ trụ chuyển động tương đối đó tạo ra trọng trường được mô tả bởi các

phương trình trường của thuyết tương đối tổng quát. Trọng trường có thể gọi là trường trọng

lực hay trường quán tính tuỳ thuộc vào việc lực chọn hệ thống đọc số nên dùng hệ thống tính

toán là thang máy thì ta có trường trọng lực. Còn nếu lấy vũ trụ làm hệ thống tính toán, thì ta

có trường quán tính. Lực quán tính và lực hấp dẫn tất cả chỉ là các từ khác nhau được áp dụng

cho cùng một hiện tượng. Đương nhiên coi vũ trụ là đứng yên thì đơn giản hơn và thuận tiện

hơn. Trong trường hợp này không ai gọi trường bên trong thang máy là trường trọng lực. Song

thuyết tương đối tổng quát lại nói rằng trường này có thể gọi là trường trọng lực, nếu chọn

được hệ thống tính toán thích hợp.

Không một thí nghiệm được thực hiện bên trong thang máy có thể chứng minh "sự giả dối" của

quan niệm đó.

Khi nói rằng người quan trắc bên trong thang máy không thể đo trường ép anh ta vào sàn là

trường quán tính hay trường trọng lực, thì điều đó không có nghĩa rằng có thể tìm ra sự khác

biệt giữa trường này và trường trọng lực bao quanh nhiều vật thể như hành tinh chẳng hạn.

Trường trọng lực xung quanh trái đất, ví dụ, có sự đối xứng mặt cầu và một trường như vậy

không thể tạo ra chính xác bằng gia tốc của thang máy trong không gian. Nếu như có hai quả

táo tách nhau ra một mét, sau đó ném từ một độ cao lớn xuống đất, thì, khi rơi chúng sẽ sát lại

gần nhau, bởi vì mỗi quả táo đều rơi theo đường thẳng hướng về tâm trái đất. Song, trong

thang máy đang chuyển động mọi vật đều rơi theo đường song song. Sự khác biệt này giữa hai

trường có thể thấy được bằng các thí nghiệm bên trong thang máy, nhưng bằng những thí

nghiệm này không thể thấy được sự khác biệt giữa lực quán tính và lực hấp dẫn. Trong các thí

nghiệm chỉ có thể phân biệt các trường có cấu trúc toán học khác nhau mà thôi.

Tình hình tương tự xuất hiện cả trên trái đất đang quay. Cuộc tranh luận thời cổ đại rằng trái

đất quay hay bầu trời quay quanh nó (như Arixtot quan niệm) dường như không khác gì cuộc

tranh luận về lựa chọn chính hệ thống tính toán (đọc số đơn giản nhất). Tất nhiên tiện nhất là

chọn hệ thống tính toán liên quan đến vũ trụ.

Chúng ta nói rằng, đối với vũ trụ, trái đất quay và lực quan tính làm dẹt trái đất kéo căng nó về

xích đạo. Không có cái gì ngoài sự bất tiện ngăn cách chúng ta chọn trái đất làm hệ thống tính

toán cố định. Trong trường hợp này, chúng ta nói rằng vũ trụ quanh trái đất đồng thời tạo ra

trường trọng lực tác động vào quĩ đạo của nó. Và chính là trường đó sẽ lại có cấu trúc khác về

mặt toán học, trường trọng lực càng quay xung quanh trái đất (hành tinh) thì nó lại càng đáng

được gọi là trường trọng lực. Nếu như chúng ta chọn trái đất làm hệ thống tính toán cố định,

chúng ta thậm chí không phải thay đổi ngôn ngữ hàng ngày của chúng ta. Chúng ta nói rằng

mặt trời mọc vào buổi sáng và lặn vào buổi chiều, rằng chòm sao Đại Hùng Tinh quay xung

quanh sao Bắc cực (sao Bắc Đẩu). Quan điểm đó có "đúng" không? Bầu trời quay hay Trái Đất

quay đúng? Câu hỏi đó vô nghĩa. Cũng giống như một cô bán hàng hỏi khách hàng rằng ăn

nhân kem kẹp trong bánh nướng hay ăn bánh nướng kèm nhân kem vậy.

Bạn hãy thử tưởng tượng vũ trụ trang bị bằng một "vòng tay" nào đó đối với vật thể trong đó

(trong chương 7 sẽ xem xét vấn đề về sự xuất hiện các vòng tay đó). Tính ngẫu nhiên của các

vòng tay này là ở chỗ, chừng nào vật thể vẫn chuyển động trong vũ trụ một cách thẳng đều, vũ

trụ không ngăn cản chuyển động của nó. Chỉ khi có ý đồ buộc vật thể chuyển động không đều

(có gia tốc) vòng tay (vòng ôm) mới bị co lại. Nếu lấy vũ trụ làm hệ thống tính toán cố định thì

vòng ôm được gọi là lực quán tính của vật thể, là trở kháng của nó đối với sự thay đổi của

chuyển động. Nếu lấy vật thể làm hệ thống tính toán cố định, vòng ôm được gọi là lực hấp dẫn

nhằm làm cho vũ trụ duy trì chuyển động không đều của vật thể đối với nó.

Thuyết tương đối tổng quát được tóm tắt như sau, Niutơn đã lí giải rằng nếu người quan trắc ở

trong trạng thái chuyển động thẳng đều, thì không có một thí nghiệm cơ học nào có thể phân

biệt được trạng thái của nó với trạng thái đứng yên, thuyết tương đối hẹp đã truyền bá kết luật

này sang cả những thí nghiệm quang học. Thuyết tương đối tổng quát là sự tiếp nối theo thứ tự

của thuyết tương đối hẹp đối với chuyển động không đều. Không một thực nghiệm nào, theo

thuyết tương đối tổng quát, dù kiểu gì đi chăng nữa, có thể giúp người quan trắc, dù trong

chuyển động nào cũng vậy, đều hoặc là không đều, phân biệt được trạng thái của mình với

trạng thái đứng yên.

Thực chất của thuyết tương đối tổng quát đôi khi được khái quát như sau: mọi định luật của tự

nhiên đều là không đổi (như nhau) đối với bất kỳ người quan trắc nào. Điều đó có nghĩa là độc

lập với người quan trắc chuyển động như thế nào, anh ta có thể mô tả mọi định luật của tự

nhiên (mà anh ta quan niệm) bằng những phương trình toán học như nhau. Anh ta có thể là

nhà bác học đang làm việc trong một phòng thí nghiệm trên mặt đất, hoặc trên mặt trăng, hoặc

trong con tàu vũ trụ lớn đang tăng tốc từ từ trên con đường tới vì sao xa xôi, thuyết tương đối

tổng quát cho anh ra hàng loạt phương trình, nhờ đó có thể biểu thị mọi định luật của tự nhiên

thể hiện trong bất kỳ thí nghiệm nào được thực hiện. Các phương trình này chính xác độc lập

với việc người quan trắc ở trạng thái tĩnh hoặc trong trạng thái chuyển động đều, hay có gia tốc

đối với bất kỳ vật thể nào khác.

Ở chương tiếp theo, chúng ta sẽ xem xét tỉ mỉ hơn lý thuyết hấp dẫn của Anhxtanh và mối quan

hệ của nó với khái niệm quan trọng mới được biết dưới tên gọi không gian - thời gian.

Lực hấp dẫn và không gian - thời gian ^

Trước khi có thể nói một điều gì đó về thuyết hấp dẫn của Anhxtanh cần có một số nhận xét

ngắn về hình học bốn chiều phi Ơcơlit. Hecman Mincopxki, nhà toán học người Ba lan đã cho

thuyết tương đối một vẻ đẹp thuật ngữ kiều diễm của không gian thời gian bốn chiều. Nhiều ý

tưởng của chương này ở một mức độ như vậy thuộc về Mincopxki cũng giống như thuộc về

Anhxtanh.

Ta hãy khảo sát một điểm hình học. Nó không có kích thước. Khi chuyển động dọc theo đường

thẳng nó tạo ra đường thẳng mang một số đo. Ta kẻ một đường thẳng dưới một góc vuông với

đường thẳng ấy và nó sẽ tạo ra một mặt phẳng mang hai số đo. Nếu chuyển động mặt phẳng

dưới một góc vuông và mặt phẳng ấy, nó sẽ tạo ra một không gian ba chiều. Và đó là giới hạn

mà chúng ta đạt tới trong tưởng tượng của mình. Nhưng nhà toán học hình dung (không phải

với ý nghĩ ông tạo ra trong tưởng tượng một bức tranh nào đó, mà là với ý nghĩa ông ta chế tác

một công cụ toán học chuyển động của không gian ba chiều theo hướng vuông góc với cả ba số

đo. Điều đó sản sinh ra không gian Ơcơlit bốn chiều không nhất thiết phải dừng lại ở con số

bốn. Chúng ta có thể chuyển sang các không gian năm, sáu, bảy hoặc nhiều số đo hơn nữa. Tất

cả các không gian này đều là Ơcơlit. Chúng là sự phát triển của hình học Ơcơlit giống như là

hình học không gian Ơcalit là sự phát triển của hình học phẳng Ơcơlit.

Hình học Ơcơlit trên một số định lý mà một trong những định lý đó là định lý nổi tiếng về đường

thẳng song song. Định lý được phát biểu như sau: Trên một mặt phẳng qua một điểm đã cho

nằm ngoài đường thẳng đã cho, có thể kẻ một đường thẳng và chỉ một đường thẳng song song

với đường thẳng đó. Người ta nói rằng mặt Ơcơlit trên đó thực hiện tiên đề này là một mặt

phẳng. Nó có tỉ suất công bằng và diện tích là vô cùng, Hình học phi Ơcơlit là hình học trong đó

định lý về các đường thẳng song song được thay bằng định lý khác. Đồng thời có thể có hai

trường hợp khác nhau căn bản.

Trường hợp thứ nhất được gọi là hình học eliptic (bầu dục), nói rằng, trên một mặt qua một

điểm đã cho nằm ngoài đường đã cho, không thể kẻ một đường song song với nó. Mặt của hình

cầu là một mô hình thô thiển, không chính xác của mặt phi Ơcơlit kiểu như vậy. Đường "thẳng

nhất" trên mặt cầu là vòng tròn lớn (vòng tròn có đường kính bằng với đường kính hình cầu).

Tất cả các vòng tròn lớn đều cắt nhau, do đó không thể có chuyện hai vòng tròn lớn song song.

Người ta nói rằng mặt phi Ơcơlit kiểu này có tỉ suất cong dương. Tỉ suất cong như vậy dẫn đến

tình hình là bề mặt bị co lại. Nó có diện tích hữu hạn chứ không phải là vô hạn.

Hình học phi Ơcơlit kiểu khác được gọi là hình học Hypebolic, là hình học trong đó tiên đề Ơcơlit

về đường thẳng song song được thay bằng tiên đề phát biểu như sau: trên một mặt qua một

điểm nằm ngoài đường đó có thể kẻ vô hạn đường, song song với nó. Một mô hình thô sơ của

phần bề mặt khi đó chính là bề mặt hình yên ngựa. Người ta nói rằng một mặt như vậy có tỉ

suất cong âm. Nó không bị co lại. Tương tự mặt phẳng Ơcơlit, nó kéo dài đến vô cực theo tất cả

các hướng. Cả hình học eliptie, cả hình học hypebolic đều là hình học của những mặt có tỉ suất

cong không đổi. Điều đó có nghĩa là tỉ suất cong ở đâu cũng là một, các đối tượng không chịu

biến dạng khi chuyển từ điểm này sang điểm khác. Hình học phi Ơcơlit kiểu tổng quát hơn

thường được gọi là hình học Riman. Đó là thứ hình học trong đó tỉ suất cong có thể thay đổi từ

điểm này qua điểm khác theo cách thức bất kỳ đã cho.

Hệt như có hình học Ơcơlit của các không gian 2, 3, 4, 5, 6, 7, ... số đo có cả hình học phi Ơcơlit

2, 3, 4, 5, 6, 7, ... số đo.

Khi sáng tạo thuyết tương đối tổng quát, Anhxtanh cho là cần thiết phải sử dụng hình học bốn

chiều Riman. Song thay cho số đo không gian thứ tư, Anhxtanh đã chọn số đo thứ tư là thời

gian. Trong khái niệm số đo thứ tư không có gì là bí mật và huyền bí cả. Đơn giản chỉ có nghĩa

là mỗi sự kiện đều có vị trí trong vũ trụ, đều là sự kiện xuất hiện trong thế giới bốn chiều của

không gian thời gian.

Điều đó có thể tự làm sáng tỏ sau khi nghiên cứu các sự kiện sau đây. Bạn ngồi ô tô vào lúc hai

giờ trưa và dời nhà đến nhà hàng ở 3 km về phía nam và 4 km về phía đông cách nhà bạn.

Trên mặt phẳng hai chiều khoảng cách ngắn nhất từ nhà bạn đến nhà hàng là cạch huyền của

hình tam giác vuông có cạch là 3 và 4 km. Cạnh huyền này có độ dài 5 km. Nhưng bạn cũng

phải mất một thời gian nào đó, chẳng hạn là mười phút cho cuộc đi. Khoảng thời gian đó có thể

biểu diễn trên đồ thị ba số đo. Một tọa độ trên đồ thị này là khoảng cách về phía nam tính bằng

km, tọa độ kia là khoảng cách về phía đông tính bằng km. Còn tọa độ theo hướng thẳng đứng là

thời gian tính bằng phút. Trên đồ thị ba số đo của không gian - thời gian "khoảng" (khoảng

không - thời gian) giữa hai sự kiện (cuộc đi của bạn từ nhà đến nhà hàng) được biểu thị dưới

dạng đường thẳng.

Đường thẳng này không phải là dạng đồ thị của cuộc đi thực tế. Đơn giản nó là số đo của

khoảng không thời gian giữa hai sự kiện. Đồ thị cuộc đi có thể là đường cong phức tạp, bởi vì ô

tô của bạn tăng tốc ở lúc đầu chuyển động, địa hình đường sá có thể làm cuộc đi đến nhà hàng

không thể thực hiện theo đường thẳng, ở đâu đó trên đường bạn phải dừng lại khi đèn đỏ. Đồ

thị hình sóng phức tạp của cuộc đi trên thực tế theo thuyết tương đối được gọi là "đường êm

dịu" của cuộc đi. Trong trường hợp vừa khảo sát đó là đường trong không - thời gian ba chiều

hoặc (như đôi khi gọi như vậy) là không gian ba chiều Mincopxki.

Bởi vì cuộc đi này trên ô tô xảy ra trên mặt phẳng có hai số đo, dường như có thể thêm một số

đo nữa là thời gian và biểu thị nó dưới dạng một đồ thị ba chiều. Khi các sự kiện xảy ra trong

không gian ba chiều, không thể vẽ đồ thị trong không gian bốn chiều, song các nhà toán học

biết hướng tới các đồ thị như vậy, chỉ không vẽ chúng ra mà thôi. Bạn thử hình dung một nhà

bác học bốn chiều là người biết vẽ đồ thị bốn chiều cũng dễ dàng như một nhà bác học bình

thường vẽ các đồ thị hai và ba chiều. Ba tọa độ của đồ thị, anh ta vẽ tương đối ứng với ba số đo

của không gian chúng ta. Tọa độ thứ tư đó là thời gian. Nếu con tàu vũ trụ rời khỏi trái đất và

đáp xuống Sao Hỏa, nhà bác học tưởng tượng của chúng ta sẽ biểu thị đường êm dịu của cuộc

đi này dưới dạng đường cong trên đồ thị bốn chiều (sẽ là đường cong, bởi vì con tàu không thể

đi qua đoạn đường như vậy mà không tăng tốc). "Khoảng" không - thời gian giữa cất cách và hạ

cánh sẽ được biểu diễn trên đồ thị này bằng một đường thẳng.

Trong thuyết tương đối bất kỳ một vật thể nào cũng đều là cấu trúc bốn chiều, chuyển động dọc

đường êm dịu thế giới bốn chiều không gian - thời gian. Nếu như có một vật thể nào đó được

coi là đứng yên so với ba toạ độ không gian, nó vẫn phải chuyển động trong thời gian. Đường

êm dịu sẽ là đường thẳng song song với trục thời gian của đồ thị. Nếu vật thể chuyển động đều

trong không gian, đường êm dịu của nó sẽ là đường thẳng như trước, nhưng giờ đây lại song

song với trục thời gian. Nếu vật thể chuyển động không đều, thì đường êm dịu sẽ trở thành

đường cong.

Bây giờ chúng ta có thể xem xét hiện tượng co rút Lorenxơ - Phitxojeral của thuyết tương đối

hẹp từ quan điểm mới: từ quan điểm của Mincopxki, nói một cách khác là từ quan điểm của

nhà bác học bốn chiều của chúng ta. Như chúng ta đã thấy khi hai còn tàu vũ trụ đi sát bên

nhau trong trạng thái chuyển động tương đối, người quan sát trên mỗi con tàu phát hiện ra

những thay đổi nào đó hình dạng của con tàu kia, cũng như những thay đổi tốc độ của đồng hồ

trên con tàu khác. Điều đó xảy ra do nguyên nhân rằng không gian và thời gian không phải là

những đại lượng tuyệt đối không phụ thuộc lẫn nhau. Chúng giống như người ta vẫn thường nói,

là hình chiếu của các đối tượng không gian thời gian. Nếu đặt cuốn sách đối diện với nguồn

sáng và chiếu bóng nó lên thành hai chiều thì khi xoay cuốn sách, có thể thay đổi bóng của nó.

Ở vị trí này, bóng của cuốn sách là một hình chữ nhật rộng, ở vị trí khác lại là hình chữ nhật

hẹp. Bản thân cuốn sách không thay đổi hình dạng chỉ có cái bóng hai chiều của nó thay đổi mà

thôi. Bằng cách tương tự người quan sát nhìn thẳng cấu trúc bốn chiều, chẳng hạn một con tàu

vũ trụ trong những hình chiếu ba chiều khác nhau tùy thuộc vào điều là nó chuyển động như thế

nào với con tàu. Trong một số trường hợp hình chiếu choán nhiều không gian hơn và ít thời gian

hơn, trong các trường hợp khác thì ngược lại. Những thay đổi anh ta quan sát được trong các sơ

đồ không gian và thời gian của con tàu khác, có thể giải thích là sự "đảo" con tàu trong không -

thời gian dẫn đến sự thay đổi hình chiếu của nó đối với không gian và thời gian. Chính Mincopxki

đã có ý như vậy khi (năm 1908) ông bắt đầu bài giảng nổi tiếng tại đại hội lần thứ 80 của hội

các nhà khoa học tự nhiên và vật lý học của Đức. Bài giảng này đã được công bố trong cuốn

sách "Nguyên lý tương đối" của Anbe Anhxtanh và những người khác. Không có một cuốn sách

phổ biến nào về thuyết tương đối là hoàn hảo mà không có trích dẫn từ bài giảng của

Mincopxki:

"Các quan điểm về không gian và thời gian mà tôi muốn trình bày trước các bạn đã được phát

triển trên cơ sở của vật lý thực nghiệm và đó là sức mạnh của chúng".

Chúng thật là cơ bản. Từ nay bản thân không gian và bản thân thời gian đều được thể hiện

trong các hình dáng đơn giản và chỉ có sự thống nhất nào đó của cả hai mới giữ gìn một thực tế

độc lập.

Từ đó hiểu ra rằng cấu trúc không - thời gian, cấu trúc bốn chiều của con tàu vũ trụ vẫn là bền

vững và không thay đổi giống như trong vật lý cổ điển. Ở đây có sự khác biệt căn bản giữa lý

thuyết co rút đã bị bác bỏ của Lorenxơ và lý thuyết co rút của Anhxtan. Đối với Lorenxơ sự co

rút là co rút thực tế của vật thể ba chiều. Đối với Anhxtanh vật thể thực tế là vật thể bốn chiều

không bị thay đổi. Hình chiếu ba chiều của nó và thời gian có thể thay đổi, nhưng con tàu bốn

chiều trong không gian thời gian là không thay đổi.

Đó là một minh chứng khác cho thấy tuyết tương đối đã chấp nhận những tuyệt đối mới. Hình

dạng bốn chiều của vật thể rắn là tuyệt đối và không thay đổi. Tương tự như vậy, khoảng cách

bốn chiều giữa hai sự kiện trong không gian thời gian là khoảng cách tuyệt đối. Nhưng người

quan sát chuyển động với vận tốc lớn trong các trạng thái khác nhau của chuyển động tương

đối, có thể bất đồng ý kiến cho rằng hai sự kiện càng ở xa nhau chừng nào trong không gian và

chúng càng cách nhau thế nào về thời gian song tất cả những người quan sát đều độc lập với

chuyển động của chúng, đều đi đến thống nhất là hai sự kiện đó đều chia tách như vậy trong

không gian thời gian.

Trong vật lý học cổ điển, một vật thể nếu không có lực nào tác động vào thì nó sẽ chuyển động

trong không gian theo đường thẳng với vận tốc không đổi. Thí dụ, một hành tinh đã chuyển

động theo đường thẳng, nếu như không duy trì được lực hấp dẫn với mặt trời. Như vậy, mặt trời

sẽ buộc hành tinh chuyển động theo quĩ đạo hình bầu dục (elip).

Trong thuyết tương đối, một vật thể chừng nào chưa có lực tác động vào thì nó cũng chuyển

động theo đường thẳng với vận tốc không đổi, song đường thẳng đó phải được xem là một

đường trong không gian - thời gian, chứ không phải trong không gian. Tất nhiên điều đó đều

đúng cả khi có lực hấp dẫn. Vấn đề là ở chỗ lực hấp dẫn, theo Anhxtanh, nói chung không phải

là lực! Mặt trời không "hấp dẫn" hành tinh. Trái đất không "kéo" quả táo rơi xuống. Đơn giản chỉ

là một thực thể vật chất lớn như mặt trời chẳng hạn, sẽ dẫn đến uốn cong không gian thời gian,

ở các miền bao quanh nó. Càng gần mặt trời, tỉ suất cong càng lớn: nói một cách khác, cấu trúc

không gian thời gian bao quanh những thực thể vật chất lớn trở thành phi Ơcơlit đó vật thể tiếp

tục chọn con đường thẳng nhất có thể được, nhưng con đường thẳng trong không - thời gian lại

được biểu diễn dưới dạng đường cong khi bị chiếu hình vào không gian. Nhà bác học tưởng

tượng của chúng ta, nếu như anh ta biểu diễn quĩ đạo trái đất trên đồ thị bốn chiều của mình

thì hẳn là đã hình dung nó dưới dạng đường thẳng. Chúng ta là những thực thể ba chiều (chính

xác hơn là những thực thể chia tách ra thành không gian ba chiều và thời gian một chiều) chúng

ta sẽ thấy con đường của nó trong không gian dưới dạng hình bầu dục (elip).

Các tác giả viết về thuyết tương đối thường giải thích điều đó như sau. Ta thử hình dung một

cục tẩy phẳng gắn vào một khung hình chữ nhật. Quả cam được đặt lên cục tẩy đó tạo ra một

hõm. Quả cầu được đặt gần quả cam sẽ lăn vào đó. Quả cam không "hấp dẫn" quả cầu. Nó tạo

ra trường (hõm) có cấu trúc khiến quả cầu khi chọn con đường ít bị cản nhất để lăn vào đó.

Bằng cách tương tự đại loại như vậy mà không gian thời gian bị uốn cong khi có những khối

lượng lớn, ví như mặt trời chẳng hạn. Sự uốn cong đó chính là lực hấp dẫn. Hành tinh khi

chuyển động xung quanh mặt trời, nó chuyển động theo hình bầu dục không phải là vì mặt trời

hấp dẫn nó, mà là bởi những thuộc tính đặc biệt của trường: trọng trường này hình bầu dục là

đường thẳng nhất mà hành tinh có thể chuyển động trong không gian thời gian.

Con đường như vậy được gọi là đường trắc địa. Từ này rất quan trọng trong thuyết tương đối

nên cần giải thích chi tiết hơn. Trên mặt phẳng Ơcơlit, ví như một tờ giấy phẳng, đường thẳng

nhất giữa hai điểm là một đường thẳng. Nó cũng là khoảng cách ngắn nhất. Trên mặt cầu

đường trắc địa giữa hai điểm là một cung của vòng tròn lớn. Nếu như kéo căng một sợi dây

giữa hai điểm đó, nó sẽ chập vào đường trắc địa. Nó cũng là đường thẳng ngắn nhất và khoảng

cách ngắn nhất giữa hai điểm.

Trong hình học Ơcơlit bốn chiều, nơi mọi số đo đều là số đo không gian, đường trắc địa cũng là

đường thẳng nhất và ngắn nhất nối hai điểm. Nhưng trong hình học phi Ơcơlit không gian thời

gian của Anhxtanh thì không phải đơn giản như vậy. Có ba số đo không gian và một số đo thời

gian thống nhất theo các phương trình của thuyết tương đối. Các phương trình đó giống như

đường trắc địa, mặc dù vẫn là đường thống nhất trong không gian - thời gian, có khoảng cách

dài nhất, chứ không phải ngắn nhất. Khái niệm này không thể giải thích nên không vận dụng

công cụ tính toán phức tạp, song nó cho kết quả kỳ dị như sau - Một vật thể chuyển động dưới

tác động chỉ của lực hấp dẫn, luôn luôn chọn con đường đòi hỏi thời gian ngắn nhất, nếu nó

được đo theo đồng hồ riêng. Bectơrăng Rutxen đã gọi đó là "định luật lười của vũ trụ". Quả táo

rơi theo đường thẳng xuống phía dưới, tên lửa chuyển động theo hình parapol, trái đất chuyển

động theo hình elip (bầu dục) bởi vì chúng đều "cực lười" tránh phải chọn còn đường khác.

Chính là định luật lười vũ trụ đó buộc vật thể chuyển động trong không gian - thời gian khiến đôi

khi chuyển động đó được giải thích bằng lực quán tính, ở trường hợp khác lại bằng lực hấp dẫn.

Nếu như bạn buộc sợi dây vào quả táo chuyển động theo đường thẳng. Chúng ta nói rằng quán

tính của quả táo cuốn hút sợi dây. Nếu sợi dây bị đứt, quả táo sẽ bay theo đường thẳng. Có cái

gì đó tương tự xảy ra khi quả táo rơi từ trên cây xuống. Trước khi nó rơi cành cây không là cho

nó chuyển động theo đường thẳng bốn chiều. Quả táo trên cành cây đứng yên (so với trái đất),

nhưng nó vẫn chuyển động trong thời gian, bởi vì nó không ngừng chín. Nếu như không có

trường hấp dẫn, diễn tiến đó dọc theo trục thời gian hẳn đã được biểu diễn bằng đường thẳng

trên đồ thị bốn chiều. Nhưng lực hút của trái đất làm cong không gian - thời gian xung quanh

quả táo. Do đó đường giới hạn của quả táo sẽ trở nên cong, khi quả táo rời cành, nó tiếp tục

chuyển động trong không gian thời gian, nhưng (sẽ là quả táo lười) giờ đây lại nắn thẳng đường

đi của mình và lực chọn đường trắc địa. Chúng ta thấy đường trắc địa này giống như đường quá

táo rơi và ta xem sự rơi là do lực hút. Song nếu muốn, chúng ta có thể nói rằng lực quán tính

của quả táo, sau khi nó bất ngờ dời khỏi đường cong của nó sẽ rơi xuống đất.

Giả sử sau khi quả táo rơi một cậu bé đi qua và đá nó đi. Cậu bé kêu đâu vì các ngón chân bị

thương. Tín đồ của Niutơn nói rằng quán tính của quả táo đối kháng với cú đá này. Tín đồ của

Anhxtanh có thể cũng nói như vậy, nhưng anh ta cũng có thể nói nếu điều đó là anh ta thích thú

hơn, rằng các ngón chân của cậu bé buộc toàn bộ vũ trụ (bao gồm cả các ngón chân) tăng tốc

theo hướng ngược lại, mà điều đó dẫn đến việc tạo ra trường hấp dẫn với một lực hút quả táo

vào các ngón chân. Tất cả những cái đó là vấn đề công thức hóa. Về mặt toán học tình hình

này được mô tả bằng một hệ thống phương trình không thời gian của trường, song vẽ nó có thể

nói (nhờ nguyên lý tương đương) bằng ngôn ngữ của một trong hai công thức của Niutơn (trọng

lực và lực quán tính).

Mặc dù thuyết tương đối thay lực hấp dẫn bằng sự biến đổi hình học của không gian - thời gian,

nó vẫn còn để lại nhiều vấn đề quan trọng mà không có câu trả lời. Chẳng hạn độ cong đó là

tức thời trong toàn bộ không gian hoặc được truyền bá giống như sóng? Đa số các nhà vật lý

đều cho rằng tỉ suất cong chuyển động giống như sóng và chuyển động đó xảy ra với vận tốc

ánh sáng. Thậm chí còn có giả thiết là sóng trọng trường bao gồm các hạt không chia tách

được có năng lượng hữu hạn và được gọi là các "hạt trọng lực", song cho đến bây giờ không

một thực nghiệm nào phát hiện ra cả sóng lẫn hạt trọng lực.

Robe Dic, nhà vật lý của trường đại học Prinxton cho rằng lực hấp dẫn dần yếu đi và có thể là

hiện nay nó giảm đi 13 % so với bốn hoặc năm tỉ năm trước, khi mới hình thành trái đất. Nếu là

như vậy thì trái đất hẳn là ngày càng nở ra và bề mặt của nó bị va đạp trong quá trình đó. Mặt

trời hẳn cũng giãn nở ra. Hai tỉ năm trước đây nó phải nhỏ hơn, quánh đặc hơn và nóng hơn: sự

kiện này có thể giải thích các điều kiện nhiệt đới hẳn đã chế ngự trên phần lớn trái đất vào các

thời đại địa chất xa xưa. Những suy tưởng này hiện nay chỉ là dự đoán, song, có thể là sẽ thực

hiện được thí nghiệm để kiểm tra lý thuyết của Dic.

Thuyết tương đối cho ta phương pháp mới nghiên cứu và mô tả lực hấp dẫn, nhưng vẫn như

trước đây nó đang còn là hiện tượng bí ẩn, ít được hiểu biết. Không ai biết được nó có liên quan

và liên quan như thế nào nói chung với điện từ trường. Anhxtanh và những người khác có ý định

nghiên cứu "lý thuyết trường thống nhất" ngõ hầu thống nhất lực hấp dẫn và lực điện từ trong

một hệ thống các phương trình toán học. Các kết quả dường như là ít khả năng. Có thể là một

bạn đọc trẻ tuổi nào đó của những dòng này, nếu như có được thiên tài sáng tạo của Anhxtanh,

đến một lúc nào đó sẽ nắm bắt được sự hình thành lý thuyết này thế nào.

Thuyết tương đối tổng quát có thể khẳng định bằng các số liệu thực nghiệm được không? Được,

mặc dù không đầy đủ như thuyết tương đối hẹp. Có một sự khẳng định khi nghiên cứu quỹ đạo

của Sao Thủy- một hành tinh gần nhất với Mặt Trời. Quĩ đạo Sao Thủy là một hình bầu dục,

song bản thân hình bầu dục quay rất chậm. Các phương pháp hấp dẫn của Niutơn có thể giải

thích điều đó, nếu tính đến ảnh hưởng của các hành tinh khác, nhưng sự quay tiên liệu diễn ra

chậm hơn là quan sát được trên thực tế. Các phương trình của Anhxtanh dự báo sự quay của

quĩ đạo hình bầu dục của hành tinh cả khi thiếu vắng hành tinh khác; trong trường hợp của Sao

Thủy, quĩ đạo dự báo gần với thực tế hơn nhiều so với quĩ đạo do Niutơn dự báo. Các quĩ đạo

của các hành tinh khác rất gần với hình tròn, do vậy hiệu quả khó quan sát hơn, nhưng vào

những năm gần đây đã tiến hành đo độ quay của quĩ đạo Sao Kim và Trái Đất, mới thấy khả

năng tương hợp với các phương trình của Anhxtanh.

Dự báo thứ hai do Anhxtanh thực hiện cho rằng, trong quang phổ mặt trời cần quan sát sự xê

dịch nhỏ về phía miền đỏ. Theo các phương trình của lý thuyết tổng quát, trường của lực hấp

dẫn tác động chậm vào thời gian. Điều đó có nghĩa là bất kỳ một quá trình tiết tấu nào, chẳng

hạn như dao động của nguyên tử hoặc tiếng tích tắc của đồng hồ, trên mặt trời sẽ di chuyển với

vận tốc nhỏ hơn một chút so với trên trái đất. Đến lượt mình cái đó sẽ dẫn đến sự di động của

quang phổ mặt trời về phía sóng dài hơn tạo nên màu đỏ dần lên của quang phổ. Sự di động

như vậy đã được quan sát, nhưng đó cũng chưa phải là minh chứng thuyết phục mạnh mẽ bởi

vì còn có thể có nhiều cách giải thích khác. Ngôi sao trắng tức sao Lùn rất gần với sao Thiên

Lang vẫn được xem là vệ tinh của sao Thiên Lang, có khối lượng đủ để tạo ra sự dịch chuyển đỏ

lớn hơn 30 lần so với Mặt Trời. Nó cũng đã được quan sát và là minh chứng mạnh mẽ hơn.

Song minh chứng mạnh mẽ nhất về tác động của lực hấp dẫn đến thời gian đã có được cách

đây không lâu trong phòng thí nghiệm sẽ nói về điều này ở của chương 8.

Lần kiểm tra ấn tượng nhất lý thuyết tổng quát được tiến hành vào năm 1919 trong thời gian

nhật thực toàn phần. Anhxtanh đã lập luận như sau: Nếu cái thang máy trong khoảng không

giữa các vì sao đi lên phía trên với vận tốc tăng lên, thì tia sáng đi trong thang máy từ tường

này đến tường kia sẽ lệch về phía dưới đồng thời chuyển động theo đường parabol. Điều đó có

thể giải thích bởi lực quán tính, nhưng theo thuyết tổng quát có thể xem thang máy là hệ thống

tính toán cố định và coi tỉ suất cong của tia sáng như kết quả tác động của lực hấp dẫn. Như

vậy, lực hấp dẫn có thể uốn cong các tia sáng. Tỉ suất cong này quá nhỏ đã có thể ghi lại từ

một thí nghiệm nào đó được tiến hành trong phòng thí nghiệm, nhưng nó có thể đo được bởi

các nhà thiên văn trong thời gian nhật thực toàn phần. Kết quả là ánh sáng mặt trời được lưu

giữ bởi mặt trăng, các vì sao nằm rìa mặt trời trở nên nhìn thấy được. Ánh sáng từ các vì sao

đó dao động qua phần mạnh nhất của trường hấp dẫn của mặt trời. Bất kỳ di động nào ở các vị

trí nhìn thấy được của các vì sao này hẳn đã chỉ ra rằng lực hấp dẫn của mặt trời uốn cong

đường đi của ánh sáng. Sự di động càng lớn thì độ uốn cong càng lớn.

Nên nhớ rằng khi bạn đọc về "sự uốn cong" ánh sáng do tác động của lực hấp dẫn hoặc lực

quán tính, bạn cần hiểu rằng đó chỉ là phương pháp ba chiều mô tả hiện tượng. Trong không

gian đường đi của ánh sáng trên thực tế bị uốn cong. Nhưng trong thế giới bốn chiều của không

gian thời gian Mocopxki, ánh sáng cũng giống như trong vật lý cổ điển vẫn chuyển động như

trước theo đường trắc địa. Nó lựa chọn con đường thẳng nhất có thể được nhà bác học bốn

chiều tưởng tượng của chúng ta trên bản đồ không gian thời gian của mình luôn luôn biểu thị

đường đi của tia sáng bằng đường thẳng cả trong trường hợp nó đi qua các trường hấp dẫn

mạnh.

Edington, nhà thiên văn học người Anh đã dẫn đầu đoàn thám hiểm vào năm 1919 đến châu Phi

quan sát nhật thực toàn phần. Mục đích chủ yếu của đoàn là tiến hành đo đạc chính xác vị trí

của các vì sao ở gần đĩa mặt trời. Vật lý học của Niuton cũng đã dự báo hiện tượng cong của

ánh sáng trọng trường hấp dẫn, nhưng các phương trình của Anhxtanh đã cho độ chênh lớn gần

gấp đôi. Như vậy ít nhất có thể có ba kết quả thí nghiệm khác nhau:

1. Những thay đổi về vị trí của các vì sao có thể không xảy ra.

2. Độ chênh có thể gần với điều mà vật lý Niuton đã dự báo.

3. Độ chênh có thể gắn với điều mà Anhxtanh đã dự báo. Kết quả đầu tiên như bác bỏ các

phương trình của Niuton cũng như các phương trình thuyết tương đối tổng quát. Kết quả thứ hai

ủng hộ Niuton và chống lại Anhxtanh. Kết quả thứ ba chống lại Niuton và ủng hộ Anhxtanh.

Theo một chuyện vui phổ biến thời đó, hai nhà thiên văn của đoàn thám hiểm này đã thảo luận

cả ba khả năng.

"Sao - một người nói - nếu chúng ta có được độ chênh lớn gấp đôi dự báo của Anhxtanh thì

sao?"

"Lúc đó - người khác nói - Edington sẽ điên mất".

Thật may mắn, độ chênh gần với dự báo của Anhxtanh. Sự quảng cáo rộng rãi tiến hành quanh

chuyến khảo sát của Edington, lần đầu tiên đã kéo sự chú ý của đông đảo công chúng vào

thuyết tương đối tổng quát. Ngày nay các nhà thiên văn vẫn hồ nghi với điều khẳng định này.

Khó khăn khi tiến hành đo đạc chính xác các vì sao trong thời gian nhật thực còn lớn hơn đề

nghị của Edington. Các kết quả thu được trong thời gian nhật thực khác nhau quan sát được sau

năm 1919 là tương đối khả quan. Tại hội nghị hội hoàng gia ở London vào tháng hai năm 1962

một nhóm các nhà bác học đã thảo luận vấn đề này. Họ đã đi đến kết luận rằng, bởi vì khó khăn

là rất lớn, nên những người quan sát nhật thực không có ý định tiến hành những đo đạc như

vậy.

Mặc dù những thí nghiệm (tuy không nhiều lắm) xác nhận thuyết tương đối tổng quát, và một

số lớn thí nghiệm vẫn chưa được tiến hành và thậm chí chưa được thảo luận để có thể khẳng

định nó tốt hơn, còn những thí nghiệm có thể làm đổ vỡ lý thuyết này. Georgi Gamop, nhà vật lý

học nổi tiếng của trường Đại học Colorado đã mô tả một thí nghiệm trong đó có sự tham gia

của các phản hạt. Như chúng ta đã nói phản hạt là hạt cơ bản giống như hạt vật chất thông

thường nhưng mang điện tích trái dấu. Một số nhà bác học cho rằng phản hạt có thể có khối

lượng âm. Nếu quả như vậy thì bất kỳ lực tác động nào vào chúng sẽ làm tăng tốc chúng theo

hướng âm. Phản quả táo cấu tạo từ phản vật chất sẽ biến vào bầu trời thay vì rơi vào mũ của

Niuton. Phản hạt có khối lượng âm hay không đang còn chưa xác định, nhưng nếu như có thì

thuyết tương đối dường như phải đương đầu với những khó khăn nghiêm trọng.

Để hiểu tại sao lại sẽ xuất hiện những khó khăn chúng ta hãy hình dung một con tàu vũ trụ

đang tĩnh toạ so với các vì sao. Ở tâm của một trong những đường cắt của nó lơ lửng một phần

quả táo với khối lượng âm. Con tàu bắt đầu chuyển động theo hướng lên trần và gia tốc một g

(g là gia tốc mà vật thật rơi xuống đất bằng khoảng 9,8 m/giây trong 1 giây, có nghĩa là cứ mỗi

giây vận tốc tăng 9,8 m/giây).

Cái gì sẽ xảy ra với quả táo?

Từ điểm ngắm của người quan sát từ ngoài con tàu liên quan với hệ thống quán tính của vũ trụ,

quả táo so với các vì sao phải nằm tại chính chỗ mà nó vốn có. Không có một lực nào, tác động

vào nó cả. Con tàu không chạm vào quả táo, nói chung nó chỉ có thể ở rất xa. Như vậy nền cắt

sẽ chuyển động lên phía trên cho đến khi chưa chạm tới quả táo. (Trong thí nghiệm tưởng

tượng này, chúng ta không khỏi lo lắng rằng sẽ có lúc sàn chạm vào quả táo).

Tình hình sẽ hoàn toàn thay đổi nếu chấp nhận con tàu làm hệ thống tính toán cố định. Bây giờ

người quan sát cần giả thiết tồn tại trường hấp dẫn đang tác động bên trong con tàu. Trường

đó đẩy quả táo lên trần và vận tốc (so với các vì sao) là hai g. Hai hệ thống tính toán không thể

thay thế cho nhau.

Nói một cách khác, khái niệm khối lượng âm không phải dễ dàng thỏa hiệp với thuyết tương đối

tổng quát khi tiếp cận của Niuton đối với lực quán tính đang tự do hoạt động. Vật lý học cổ điển

đơn giản là chấp nhận quan điểm thứ nhất con tàu đang chuyển động tuyệt đối đối với môi

trường ête. Quả táo cũng ở trong trạng thái đứng yên tuyệt đối. Không hề có một trường hấp

dẫn nào ngõ hầu làm rối bức tranh này.

Gamop kết luận rằng phát hiện khối lượng âm và hiệu quả phản trọng lực đi kèm với nó hẳn "đã

buộc chúng ta lựa chọn giữa định luật quán tính của Niuton và nguyên lý tương đương của

Anhxtanh. Tác giả hy vọng rằng sẽ không phải lựa chọn như vậy nữa".

Nguyên lý tương đương của Anhxtanh phát biểu rằng, trường trọng lực xuất hiện khi vật thể

được truyền gia tốc hoặc sự quay tùy thuộc vào lựa chọn hệ thống tính toán có thể được xem

như trường quán tính hoặc như trường trọng lực.

Nguyên lý Makhơ ^

Điều đó đồng thời xuất hiện vấn đề rất quan trọng có thể dẫn đến những bài toán sâu sắc đang

còn chưa được giải quyết.

Những trường lực này là kết quả chuyển động đối với không gian - thời gian tồn tại độc lập với

vật chất, hay là chính không - thời gian được tạo ra bởi vật chất? Nói khác đi, có tạo được ra

không - thời gian bởi các thiên hà hoặc các vật thể khác của vũ trụ?

Ý kiến của các chuyên gia rất khác nhau. Những kiến giải cũ của thế kỷ 18,19 về sự tồn tại của

"không gian" hoặc của "ête", độc lập với vật chất vẫn hiện hữu đến tận ngày nay, nhưng chỉ bây

giờ người ta mới tranh luận về cấu trúc không - thời gian (đối khi còn gọi là trường met) của vũ

trụ. Đa số các nhà bác học viết về thuyết tương đối A. Edington, B. Rutxen, A. Uatit v. v... đều

cho rằng bản chất của không gian thời gian không phụ thuộc vào các vì sao, mặc dù, tất nhiên,

tỉ suất cong cục bộ là do các vì sao tạo ra. Nói một cách đại khái là nếu không tồn tại vật thể

nào khác trong vũ trụ, trừ trái đất ra thì đã có thể các tác giả này khẳng định, rằng trái đất

quay so với không gian - thời gian (vấn đề là không gian đó có tỉ suất cong như thế nào nói

chung, là dương, là âm, hay bằng số không thì không thấy đề cập trong cuộc tranh luận). Một

con tàu vũ trụ, đơn độc, một vật thể duy nhất trong vũ trụ đã có thể khởi động các động cơ và

tăng tốc. Các nhà du hành vũ trụ trong con tàu khi tăng tốc hẳn cảm nhận được các lực quán

tính. Trái đất cô đơn đang quay trong không gian bị dẹt lại theo hướng xích đạo. Hiện tượng dẹt

lại xuất hiện dường như là do các hạt vật chất bị các tác động của lực khi chuyển động không

theo đường trắc điạ trong không gian - thời gian. Các hạt cơ bản, phải chuyển động như thường

nói là ngược "chiếc thảm lông" không gian thời gian khác. Thậm chí trên trái đất cô đơn cũng có

thể đo lực quán tính được gọi là lực Corialis và xác định hướng quay của trái đất.

Anhxtanh đã thừa nhận tính đúng đắn của quan điểm tương tự, nhưng (ít ra là ở thời trẻ) không

tâm đắc lắm. Ông ưa quan điểm lần đầu tiên do nhà triết học giáo chủ người Ieclan là Becơli đề

xuất. Becơli đã chứng minh rằng, nếu trái đất là một vật thể duy nhất trong vũ trụ thì nói về khả

năng quay của nó là vô nghĩa. Quan điểm tương tự như vậy ở một mức độ nào đó cũng được

chia sẻ bởi nhà triết học người Đức thế kỷ 18 Lepnit và nhà vật lý học thiên chúa giáo người Hà

Lan là Huyghen, song ông đã bị lãng quên khi E. Makhơ (nhà vật lý người Áo thế kỷ 19) chịu làm

sống lại nó bằng cách đề xuất một lý thuyết khoa học mô phỏng sự thật. Makhơ đã tán dương

nhiều trong thuyết tương đối, và Anhxtanh đã viết về ảnh hưởng to lớn của Makhơ đến các tư

tưởng bàn đầu của ông.

Thật đáng buồn phải ghi nhận rằng Makhơ về già, khi tư tưởng của ông đã được phản ánh trong

lý thuyết của Anhxtanh đã từ chối thừa nhận tính đúng đắn của thuyết tương đối.

Từ quan điểm của Makhơ, vũ trụ mất đi các vì sao sẽ không có cấu trúc không thời gian để trái

đất có thể quay đối với nó. Để tồn tại các trường trọng lực (hoặc trường quán tính) có khả năng

làm dẹt hành tinh hoặc dâng chất lỏng vào thành của một cái thùng đang quay, cần sự tồn tại

của các vì sao tạo ra cấu trúc không gian - thời gian. Không có cấu trúc như vậy, không gian

thời gian không thể có các đường trắc địa, thậm chí chúng ta không thể nói rằng chùm sáng

truyền bá trong không gian hoàn toàn rỗng, sẽ đi theo đường trắc địa, bởi vì khi thiếu vắng cấu

trúc không - thời gian chùm sáng không thể ưa một đường đạn đạo nào khác. Như thể hiện của

A. D'Abro (trong cuốn sách tuyệt vời "Cách mạng của tư tưởng khoa học") chùm sáng hẳn đã

không biết đến bằng con đường nào. Thậm chí sự tồn tại một thể hình cầu, giống như trái đất

cũng không thể có được. Các phần tử của trái đất tập hợp lại bởi lực hấp dẫn, còn lực hấp dẫn

lại làm chuyển động các hạt theo đường trắc địa. Không có cấu trúc không gian - thời gian,

không có đường trắc địa trái đất (theo lời của D'Abro) hẳn ta không biết rằng nó chấp nhận hình

dạng nào. Về quan điểm này, Edington đã có lần nói một cách hài hước rằng: Trong một vũ trụ

hoàn toàn trống không (nếu Makhơ đúng) thì trường trọng lực của Anhxtanh phải triệt tiêu!"

D'Abro mô tả thí nghiệm tương đương giúp hiểu về quan điểm của Makhơ. Ta hình dung một

nhà du hành vũ trụ sống ở trong không gian. Cứ để anh ta là một vật thể duy nhất trong vũ trụ.

Trong tay anh ta có một viên gạch. Chúng ta biết rằng viên gạch phải là không trọng lượng

(không có khối lượng trọng trường). Khối lượng quán tính nơi anh ta sẽ ra sao? Nếu nhà du

hành định ném viên gạch vào không gian có xuất hiện lực cản chuyển động của tay anh ta

không? Theo quan điểm của Makhơ, không có chuyện đó. Thiếu những vì sao tạo ra trường met

không gian thời gian sẽ không có gì làm mốc cho viên gạch tăng tốc. Tất nhiên, có nhà du hành

vũ trụ, nhưng khối lượng của anh ta nhỏ đến nỗi bất kỳ hiệu ứng nào liên quan đến anh ta đều

có thể bỏ qua.

Đối với quan điểm này của Makhơ, Anhxtanh sử dụng thuật ngữ "nguyên lý Makhơ". Ban đầu

Anhxtanh hi vọng rằng quan điểm này có thể đưa vào thuyết tương đối. Và trên thực tế ông đã

lập ra mô hình vũ trụ (sẽ nói tới ở chương 9), trong đó cấu trúc không - thời gian của vũ trụ chỉ

tồn tại chừng nào có sự tồn tại của các vì sao và các thể vật chất khác tạo ra nó. "Trong thuyết

tương đối tiếp tục, Anhxtanh viết vào năm 1917, khi công bố mô tả toán học đầu tiên của mô

hình này - không thể là một lực quán tính nào đối với "không gian" mà chỉ là quán tính của khối

lượng đối với nhau. Như vậy, nếu tôi đẩy một khối lượng nào đó đủ xa với tất cả các khối lượng

khác của vũ trụ, lực quán tính của nó sẽ tụt xuống số không!

Về sau đã tìm ra sự bất cập nghiên trọng trong mô hình vũ trụ của Anhxtanh và ông đã buộc

phải từ bỏ nguyên lý của Makhơ, song nguyên lý này tiếp tục có ảnh hưởng mạnh mẽ đến cả

những nhà vũ trụ học hiện đại. Điều đó xảy ra là bởi vì tính tương đối của chuyển động trong đó

đã tiến đến giới hạn. Quan điểm đối lập cho rằng sự tồn tại của thực tế không - thời gian thậm

chí khi thiếu vắng các vì sao, trên thực tế rất gần với lý thuyết cũ về ête. Thay vì trạng thái bất

động, đông cứng không nhìn thấy có tên gọi là ête là dự báo về một cấu trúc bất động, không

nhìn thấy của không gian thời gian. Nếu chấp nhận giả thuyết đó thì gia tốc và sự quay sẽ có

tính chất tuyệt đối đáng ngờ. Và trên thực tế những người tuyên truyền cho quan điểm này dám

quả quyết nói về sự quay và gia tốc như về những cái "tuyệt đối". Song nếu hiện tượng quán

tính là tương đối, nhưng không phải là so với cấu trúc đó, mà chỉ là so với cấu trúc được tạo ra

bởi các vì sao, thì tính tương đối xuất hiện dưới dạng thuần túy nhất.

Đenit Xkiema, nhà vũ trụ học người Anh đi theo con đường của Makhơ đã tạo ra một lý thuyết

độc đáo.

Nó được trình bày khá hấp dẫn trong cuốn sách phổ biến "Sự thống nhất của vũ trụ". Theo

Xkiema, hiện tượng quán tính xuất hiện khi quay và tăng tốc là kết quả của chuyển động so với

toàn bộ vật chất trong vũ trụ. Nếu là như vậy thì việc đo quán tính cho ta phương pháp đánh giá

số lượng đầy đủ của vật chất trong vũ trụ. Các phương trình của Xkiema chỉ ra rằng ảnh hưởng

của các vì sao gần nhất đến quán tính là cực kì nhỏ - Tất cả các vì sao trong thiên hà chúng ta,

theo tính toán của ông chỉ tạo ra một phần mười triệu lực quán tính trên trái đất. Phần chính

của lực này được tạo ra bởi các thiên hà xa xôi. Xkiema đánh giá rằng 80 % lực quán tính là kết

quả của chuyển động đối với các ngân hà càng xa chừng nào thường càng không nhìn thấy rõ

bằng kính viễn vọng của chúng ta .

Thời Makhơ, người ta không rõ rằng ngoài thiên hà của chúng ta còn tồn tại cả những thiên hà

khác, thậm chí cũng không biết được rằng thiên hà của chúng ta quay, ngày nay các nhà thiên

văn học biết rằng các lực li tâm xuất hiện khi quay, làm dẹt thiên hà chúng ta rất mạnh. Từ

quan điểm của Makhơ, hiện tượng dẹt đó có thể xảy ra chỉ trong trường hợp, nếu bên ngoài

thiên hà của chúng ta tồn tại những khối lượng lớn vật chất. Mặc Makhơ nói và các hiện tượng

quán tính khi quay thiên hà chúng ta. Xkiema chỉ ra rằng ông có thể dự đoán về sự tồn tại của

cả những thiên hà khác trong vòng 50 năm trước khi phát ra chúng.

Sự kỳ lạ của quan điểm Xkiema trở nên trực quan hơn với minh họa sau đây. Một lần tôi đã

mua một cái hộp hình vuông có nắp kính, bên trong có bốn quả cầu thép. Mỗi quả cầu đều

được đặt trong một máng chạy từ tâm hình vuông đến một trong các góc của nó. Bài toán là

làm sao để chọc đồng thời cả bốn quả cầu vào các góc. Phương pháp duy nhất là đặt hộp đó

lên bàn và cho nó quay. Lực li tâm giúp giải quyết vấn đề. Nếu Xkiema đúng thì đã không thể

phán đoán bằng phương pháp tương tự mà không nhớ đến có hàng trăm tỉ thiên hà ở cách rất

xa chúng ta.

Phải chăng thuyết tương đối phát triển theo hướng do Makhơ và Xkiema chỉ ra hoặc bảo lưu cấu

trúc không gian - thời gian không phụ thuộc vào các vì sao? Về điều đó không ai có thể trả lợi

được. Nếu phát triển thành công lý thuyết trường, trong đó các hạt cơ bản của vật chất có thể

hiểu như là trường không - thời gian, thì bản thân các vì sao sẽ trở thành chỉ một trong những

thể hiện của trường đó. Thay vì các vì sao tạo ra cấu trúc, chính cấu trúc sẽ tạo ra các vì sao.

Song, hiện nay mọi cái đó chỉ là dự báo.

Phản đề cặp song sinh ^

Phản ứng của các nhà bác học và triết học toàn thế giới là như thế nào đối với thế giới mới, kỳ

lạ của thuyết tương đối? Rất khác nhau. Đa số các nhà vật lý và thiên văn chau mày vì sự vi

phạm đến "tư duy lành mạnh" và bởi các trở ngại toán học của thuyết tương đối tổng quát đều

giữ yên lặng một cách lịch lãm. Nhưng các nhà bác học và triết học có khả năng hiểu được

thuyết tương đối, đã chào đón nó với một sự phấn chấn khác thường. Chúng ta còn nhớ

Edington đã nhanh chóng ý thức được tầm quan trọng của những thành tựu của Anhxtanh như

thế nào. Moris Slic, Bectơran Rutxen, Rudol Kernep, Ernơ Kaisơ, Alfet Uritet, Gan Raykhenbac và

nhiều nhà triết học nổi tiếng khác là những người lạc quan đã viết về lý thuyết này và cố gắng

làm sáng tỏ các hệ quả của nó. Cuốn sách của Rutxen "Nhập đề thuyết tương đối" đã lần đầu

tiên được công bố vào năm 1925, nhưng cho đến nay nó vẫn là một diễn giải phổ biến hay nhất

về thuyết tương đối. Nhiều nhà khoa học dường như không có khả năng thoát ra khỏi phong

cách tư duy cũ, kiểu Niuton. Đa phần họ giống các nhà khoa học thời Galilê không thể nào buộc

mình thừa nhận rằng Arixtot cũng có thể phạm sai lầm. Chính Maitanxan do kiến thức toán học

hạn chế đã không thừa nhận thuyết tương đối mặc dù cuộc thí nghiệm vĩ đại của ông đã mở

đường cho thuyết tương đối hẹp. Sau đó, vào năm 1935, khi tôi còn là sinh viên trường đại học

Chicago, giáo sư Viliam Macmilan, nhà khoa học nổi tiếng đã giảng cho chúng tôi một giáo trình

về thiên văn học. Ông đã nói công khai rằng thuyết tương đối là một ngộ nhận đáng buồn

"Chúng tôi, thế hệ hiện đại đã quá sức chịu đựng để chờ đợi một cái gì đó", Macmilan viết như

vậy vào năm 1927. "Trong 40 năm từ sau cuộc thử nghiệm của Maikenxon phát hiện sự chuyển

động mong đợi của trái đất đối với môi trường ête, chúng ta đã từ chối tất cả những gì mà

trước kia người ta đã dạy chúng tôi (để) tạo dựng một tiên đề vô lý nhất trong tất cả những

điều mà tôi có thể nghĩ ra và tạo dựng một nền cơ học không Niuton phù hợp với tiên đề đó.

Thành tích đạt được là món quà tuyệt vời của tính năng động trí tuệ của chúng tôi và của sự

thông minh của chúng tôi, nhưng không có niềm tin cho tư duy lành mạnh của chúng tôi". Nhiều

phản bác đa dạng nhất đã xuất hiện để chống lại thuyết tương đối. Một trong những phản bác

sớm nhất và dai dẳng nhất chĩa vào phản đề lần đầu tiên được đích thân Anhxtanh đưa ra trong

bài báo của ông về thuyết tương đối hẹp (từ "phản đề" dùng để chỉ một cái gì đó ngược với cái

đã được thừa nhận nhưng về mặt logic thì không mâu thuẫn).

Phản đề này được chú ý nhiều trong các ấn phẩm khoa học hiện đại, bởi vì sự phát triển các

chuyến bay vũ trụ cùng với việc thiết kế các máy móc chính xác thần kỳ để đo thời gian có thể

nhanh chóng cho phép kiểm tra phản đề đó bằng phương pháp trực tiếp. Phản đề này thường

được trình bày như một thí nghiệm bằng tư duy với sự tham gia của cặp song sinh. Họ kiểm tra

đồng hồ. Một người song sinh trên con tàu vũ trụ thực hiện chuyến bay dài trong vũ trụ. Khi anh

ta trở về, cặp song sinh đối chiếu đồng hồ. Theo thuyết tương đối hẹp đồng hồ của nhà du hành

chỉ thời gian ít hơn.

Nói khác đi, thời gian trên con tàu vũ trụ chuyển động chậm hơn trên trái đất. Đến khi đường

bay vũ trụ bị giới hạn bởi hệ mặt trời và thực hiện với vận tốc tương đối nhỏ, sự khác biệt về

thời gian đó sẽ nhỏ không đáng kể. Nhưng trên khoảng cách lớn và với vận tốc gần với vận tốc

ánh sáng, "sự co rút thời gian" (đôi khi người ta gọi hiện tượng đó như vậy) sẽ tăng lên. Không

có gì nghi ngờ rằng cùng với thời gian sẽ phát minh ra phương pháp ngõ hầu con tàu vũ trụ với

gia tốc chậm lại, có thể đạt tới vận tốc chỉ nhỏ hơn vận tốc ánh sáng một chút. Điều đó cho

phép có thể tham quan các vì sao khác trong thiên hà chúng ta, thậm chí cả những thiên hà

khác nữa. Như vậy phản đề cặp song sinh lớn hơn chuyện các hộp chứa quả cầu một khi chuyện

du hành vũ trụ trở nên bình thường.

Ta giả sử rằng nhà du hành vũ trụ là một người song sinh vượt qua khoảng cách hàng nghìn

năm ánh sáng và trở về khoảng cách này nhỏ hơn so với kích thước của thiên hà, chúng ta liệu

có tin được rằng nhà du hành vũ trụ không chết khá lâu trước khi kết thúc chuyến đi.

Liệu có cần những chuyến đi như trong nhiều tác phẩm khoa học viễn tưởng hàng đoàn nam nữ

với các thế hệ thay nhau sống chết trong khi con tàu đang thực hiện chuyến bay dài giữa các vì

sao?

Câu trả lời phụ thuộc vào vận tốc của con tàu. Nếu cuộc hành trình xảy ra với vận tốc gần với

vận tốc ánh sáng, thì thời gian bên trong con tàu sẽ trôi chậm đi rất nhiều. Theo thời gian trái

đất, cuộc hành trình mất ví dụ, hơn 2000 năm. Theo quan điểm của nhà du hành vũ trụ trong

con tàu nếu anh ta chuyển động rất nhanh, cuộc hành trình có thể kéo dài chỉ vài chục năm

thôi.

Đối với những bạn đọc ưa những thí dụ bằng số, chúng ta dẫn ra kết quả tính toán gần đây của

Etvin Macmilan, nhà vật lý trường đại học Caliphoonia ở Becơli. Một nhà du hành vũ trụ nào đó

khởi hành từ trái đất đến với đám tinh vân tiên nữ. Điều đó chí ít cũng phải mất hai triệu năm

ánh sáng. Nửa đoạn đầu nhà du hành vũ trụ đi với gia tốc không đổi 2g, sau đó chậm dần đều

cho đến khi tới được đám tinh vân. (Đây là phương pháp thuận lợi tạo ra trường hấp dẫn không

đổi bên trong con tàu trong suốt thời gian dài của cuộc hành trình không có sự quay). Đường

trở về cũng theo phương pháp như vậy. Theo đồng hồ riêng của nhà du hành vũ trụ thời gian

cho chuyến du hành mất 29 năm. Theo đồng hồ trái đất phải mất gần 3 triệu năm!

Bạn nhận thấy ngay rằng các khả năng hấp dẫn đa dạng nhất đang xuất hiện. Một nhà khoa học

có tuổi và cô nhân viên phòng thí nghiệm trẻ của anh ta say đắm nhau. Họ cảm thấy sự chênh

lệch tuổi tác không cho phép họ cưới nhau. Do đó anh chàng làm một cuộc du hành vũ trụ dài

dài với vận tốc gần bằng vận tốc ánh sáng. Anh ta trở về ở độ tuổi 41. Cùng lúc cô bạn gái trên

trái đất đã trở thành phụ nữ 33 tuổi. Hẳn là cô ta không thể chờ đợi sự trở về của người yêu

mình sau 15 năm và đã đi lấy một người khác. Nhà bác học không thể chịu đựng được thực tế

đó và lại làm một chuyến du hành tiếp theo càng để làm sáng tỏ một cách thú vị quan hệ của

các thế hệ nối tiếp đối với lý thuyết anh ta tạo ra, được khẳng định hay bị bác bỏ. Anh ta trở về

trái đất ở tuổi 42. Cô bạn gái lâu năm đã chết và còn tồi tệ hơn ở chỗ không còn dấu vết gì từ

các lý thuyết mà anh yêu quý biết chừng nào. Đau khổ anh lại lên đường đi xa hơn nữa và trở

về ở độ tuổi 45 thì chỉ còn gặp một thế giới đã trải qua mấy nghìn năm. Có thể cũng giống như

nhà du hành trong tiểu thuyết của Well "Máy thời gian", anh ta đã phát hiện ra rằng loài người

đã sinh sôi. Và giờ đây anh ta "ngồi phải cọc". Máy thời gian của Well có thể chuyển động theo

hai hướng, còn ở nhà bác học cô đơn của chúng ta sẽ không có cách trở ngược lại giai đoạn đã

từng quen thuộc với anh ta của lịch sử loài người.

Nếu những chuyến du hành như vậy theo thời gian có thể thực thi được, thì sẽ xuất hiện những

vấn đề đạo đức rất rắc rối. Sẽ có chuyện, chẳng hạn một phụ nữ lấy đứa cháu nhiều nhiều đời

của chính mình làm chồng được không?

Xin bạn cứ bàn luận: loại du hành này theo thời gian rối như canh hẹ (của khoa học viễn tưởng)

ví như, khả năng rơi vào quá khứ và giết chính bố mẹ mình trước khi được sinh ra hoặc mất hút

vào tương lai và bắn chính mình bằng một viên đạn vào trán. Ta hay xem tình hình của cô Ket

từ bài thơ vui nổi tiếng sau đây:

Một cô gái tre mang tên Ket

Di chuyển nhanh hơn cả ánh tà

Nhưng luôn luôn không về đến chốn

Bước nhanh chân thì gặp lại hôm qua!

Trở lại hôm qua này hẳn là phải gặp lại người kẹp đôi của mình. Nếu không thì (ngược lại) hẳn

là không có ngày hôm qua trên thực tế. Nhưng hôm qua không thể là hai nàng Ket, bởi vì, khi

xuất hành theo thời gian, nàng Ket không nhớ gì về cuộc gặp của mình với người kẹp đôi kia đã

xảy ra vào hôm qua. Như vậy, trước các bạn là một mâu thuẫn logic. Kiểu hành trình như vậy

theo thời gian là không thể được đứng về mặt logic, nếu không giả thiết về sự tồn tại của thế

giới đồng nhất với đường đi của chúng ta nhưng lại chuyển động theo đường khác về thời gian

(vào ngày trước đó). Và tình hình thậm chí là rất rối rắm!

Bạn cũng cần thấy rằng dạng thức Anhxtanh về hành trình theo thời gian không ghi nhận nhà du

hành một khả năng bất tử thực sự nào đó hoặc chỉ là sống lâu. Từ quan điểm của nhà du hành

tuổi già sẽ đến gần với anh ta khi vận tốc luôn luôn là bình thường. Và chỉ có "thời gian riêng"

của trái đất dường như đối với nhà du hành là được mang với vận tốc chóng mặt.

Anri Becxơn, nhà triết học nổi tiếng người Pháp là một trong những nhà tư tưởng nổi tiếng nhất

có luận chiến với Anhxtanh do phản đề cặp song sinh. Ông đã viết nhiều về phản đề này, trắc

ẩn những điều mà ông xem là phi lý (về mặt logic). Đáng tiếc rằng những điều ông viết ra chỉ

chứng tỏ ông là một nhà triết học lớn mà lại thiếu kiến thức về toán học. Một số năm sau sự

phản bác lại diễn ra lần nữa. Dobe Ding, nhà vật lý học người Anh "lớn tiếng nhất" cự tuyệt

niềm tin vào phản đề. Nhiều năm sau đó ông lại viết những bài báo sắc sảo về phản đề này và

qui lỗi các chuyên gia về thuyết tương đối nào là đần độn, nào là hoạt đầu. Sự phân tích trên bề

mặt của chúng ta dẫn ra tất nhiên không làm sáng tỏ đầy đủ cuộc luận chiến diễn tiến, mà

những người tham gia nhanh chóng đi sâu vào các phương trình phức tạp, nhưng lại không làm

sáng tỏ những nguyên nhân tổng quát dẫn đến sự thừa nhận như quán triệt bởi các chuyên gia

rằng phản đề cặp song sinh sẽ thực hiên được đúng như Anhxtanh đã viết về nó.

Sự phản bác của Ding là mạnh mẽ nhất trong số những phản bác được đề xướng nhằm chống

lại phản đề cặp song sinh. Theo thuyết tương đối tổng quát không tồn tại bất kỳ một chuyển

động tuyệt đối nào, không có hệ thống tính toán "được lựa chọn". Luôn luôn có thể lựa chọn vật

thể trong chuyển động làm hệ thống tính toán bất động, mà không phá vỡ đồng thời bất kỳ quy

luật nào của tự nhiên. Khi chấp nhận trái đất làm hệ thống tính toán, thì nhà du hành tương đối

thực hiện chuyến đi dài, trở về và phát hiện ra rằng đã trở nên trẻ hơn người anh em láng

giềng. Vậy điều gì sẽ xảy ra nếu nối hệ thống tính toán với con tàu vũ trụ? Ngày nay chúng ta

cần phải cho rằng trái đất đã hoàn thành chuyến đi dài đã quay trở lại. Trong trường hợp này

người láng giềng sẽ là người của cặp song sinh đã ở trên con tàu vũ trụ. Khi trái đất quay trở lại

có phải người anh em ở trên đó trở nên trẻ hơn? Nếu xảy ra như vậy thì tại vị trí được tạo ra

cho phản đề nhường chỗ cho tư duy lành mạnh là có mâu thuẫn rõ ràng về mặt logic. Rõ ràng

mỗi người của cặp so sinh không thể trẻ hơn người khác.

Ding muốn từ đó rút ra kết luận: hoặc là cần giả thiết rằng khi kết thúc cuộc hành trình tuổi tác

của cặp song sinh sẽ đúng như nhau, hoặc nguyên lý tương đối cần loại bỏ.

Không thực hiện bất kỳ tính toán nào dễ dàng hiểu rằng ngoài hai sự lựa chọn còn có những lựa

chọn khác. Đúng là bất kỳ sự chuyển động nào là tương đối, nhưng trong trường hợp này có

một sự khác biệt rất quan trọng giữa chuyển động tương đối của nhà du hành vũ trụ và chuyển

động tương đối của người láng giềng. Người láng giềng không chuyển động đối với vũ trụ .

Sự khác biệt này là như thế nào trong phản đề?

Ta giả thiết rằng nhà du hành tương đối khởi hành thăm viếng hành tinh ở đâu đó trong thiên

hà. Hành trình của anh ta diễn ra với vận tốc không đổi. Đồng hồ của người láng giềng liên

quan với hệ thống đọc số quán tính của trái đất và số chỉ của nó trùng với số chỉ của tất cả các

đồng hồ còn lại trên trái đất bởi vì chúng đều không chuyển động so với nhau. Đồng hồ của nhà

du hành vũ trụ liên quan với hệ thống đọc số quán tính khác với con tàu. Nếu như con tàu được

duy trì cùng một hướng, thì hẳn là không xuất hiện một phản đề nào đó chỗ không có một

phương pháp nào số chỉ của hai đồng hồ. Nhưng ở hành tinh X con tàu dừng lại và quay trở về.

Đồng thời hệ thống đọc số quán tính bị thay đổi, thay cho hệ thống đọc số chuyển động dời trái

đất xuất hiện hệ thống chuyển động về phía trái đất. Với sự thay đổi như vậy sẽ xuất hiện nếu

gia tốc khi quay là rất lớn, thì nhà du hành vũ trụ (chứ không phải người anh em sinh đôi của

anh ta trên trái đất) sẽ chết. Các lực quán tính này xuất hiện, tất nhiên là do nhà du hành vũ trụ

tăng tốc so với vũ trụ. Chúng không xuất hiện trên trái đất là bởi vì trái đất không trải qua sự

tăng tốc như vậy.

Từ một quan điểm, có thể nói rằng lực quán tính tạo ra bởi gia tốc "gây ra" sự chậm trễ đồng

hồ của nhà du hành vũ trụ: từ quan điểm khác, sự xuất hiện gia tốc đơn giản chỉ là phát hiện sự

thay đổi hệ thống đọc số. Do sự thay đổi như vậy, đường êm dịu của con tàu vũ trụ, đường đi

của nó trên đồ thị trong không gian thời gian bốn chiều Mincopxki cũng thay đổi sao cho "thời

gian riêng" đầy đủ của hành trình với sự trở về dường như nhỏ hơn thời gian riêng đầy đủ dọc

đường êm dịu của người song sinh láng giềng. Khi thay đổi hệ thống đọc số có sự tham gia của

gia tốc, nhưng chỉ các phương trình của thuyết tương đối hẹp mới tham gia tính toán.

Sự phản bác của Ding vẫn được bảo lưu, bởi vì chính những tính toán ấy có thể được hoàn

thành cả với giả thiết rằng hệ thống đọc số cố định có liên quan với con tàu, chứ không phải với

trái đất. Bây giờ trái đất lên đường, sau đó nó quay trở lại đồng thời thay đổi hệ thống đọc số

quán tính. Tại sao không làm những tính toán như vậy và trên cơ sở những phương trình như

vậy không chỉ ra được rằng thời gian trên trái đất đã bị chậm lại? Cả những tính toán đó mà

đúng sẽ không có một sự kiện quan trọng khác thường lệ: khi trái đất chuyển động cả vũ trụ

cùng chuyển động với nó. Khi trái đất quay, cả vũ trụ cũng sẽ quay theo gia tốc của trái đất, tạo

nên trường trọng lực mạnh. Như đã chỉ rõ lực hấp dẫn làm đồng hồ chậm lại. Đồng hồ trên mặt

trời, ví dụ như vậy, đánh tích tắc ít hơn đồng hồ như vậy trên trái đất, còn ở trên trái đất lại

đánh ít hơn trên mặt trăng. Sau khi thực hiện tất cả các phép tính dường như là trường trọng

lực tạo ra bởi gia tốc của vũ trụ, làm chậm đồng hồ trong con tàu vũ trụ so với đồng hồ trên trái

đất với độ chính xác hệt như chúng ta bị chậm lại trong trường hợp trước. Trường trọng lực, tất

nhiên không ảnh hưởng đến đồng hồ trên trái đất, trái đất không chuyển động đối với vũ trụ

như vậy, trên đó cũng không xuất hiện trường trọng lực bổ sung.

Chú ý xem xét trường hợp trong đó xuất hiện sự khác biệt đúng như vậy về thời gian, mặc dù

không có gia tốc nào cả. Con tàu vũ trụ A bay qua gần trái đất với vận tốc không đổi hướng về

phía hành tinh X. Tại thời điểm đi qua của con tàu gần trái đất đồng hồ trên đó dựng lại ở số

không. Con tàu A tiếp tục hành trình của mình đến hành tinh X và đi qua gần con tàu vũ trụ B

đang chuyển động với vận tốc không đổi theo hướng ngược. Tại thời điểm gần nhất con tàu A

bằng radio báo cho con tàu B thời gian (đo được theo đồng hồ của mình đi qua từ điểm bay qua

của nó gần trái đất. Trên con tàu B người ta ghi nhớ những thông tin này và tiếp tục chuyển

động về phía trái đất với vận tốc không đổi. Khi đi qua gần trái đất, họ báo về trái đất những số

liệu về thời gian đã mất A cho cuộc hành trình từ trái đất đến hành tinh X, cũng như thời gian

đã mất B (và đo được theo đồng hồ) cho cuộc hành trình từ hành tinh X đến trái đất. Tổng hai

khoảng thời gian đó sẽ nhỏ hơn thời gian (đo được theo đồng hồ trái đất) trôi qua từ thời điểm

đi qua A gần trái đất đến thời điểm đi qua B.

Sự khác biệt này về thời gian có thể tính toán theo các phương trình của thuyết tương đối hẹp.

Ở đây không có một gia tốc nào. Tất nhiên, trong trường hợp này không có cả phản đề cặp

song sinh, bởi vì không có nhà du hành vũ trụ bay đi và quay trở lại. Cũng có thể giả thiết rằng

người song sinh xuất phát trên con tàu A, sau đó chuyển sang con tàu B và quay trở lại: nhưng

không thể làm điều đó mà không tính đổi từ một hệ thống đọc số quán tính sang hệ thống khác.

Muốn làm một sự chuyển đổi như vậy, anh ta cần phải tác động xít xao vào các lực quán tính

mạnh. Những lực này gây ra bởi sự thay đổi hệ thống đọc số. Nếu muốn chúng ta có thể nói

rằng lực quán tính đã làm chậm đồng hồ của người song sinh. Song nếu xem xét toàn bộ câu

chuyện từ quan điểm của người song sinh đang du hành sau khi nối anh ta với hệ thống đọc số

cố định thì trong kiến giải có cả vũ trụ đang chuyển động tạo ra trường trọng lực (khởi nguồn

rối rắm chủ yếu khi xem xét phản đề người song sinh là ở chỗ tình hình có thể mô tả từ các

quan điểm khác nhau). Tùy thuộc vào quan điểm được chấp nhận các phương trình của thuyết

tương đối luôn luôn cho cùng một sai khác về thời gian. Sự sai khác này có thể thu được khi áp

dụng chỉ một thuyết tương đối hẹp. Và nói chung để tranh luận phản đề cặp song sinh chúng ta

tìm đến thuyết tương đối tổng quát chỉ để bác bỏ sự phản đối của Ding. Thường là không thể

xác định khả năng nào là "đúng". Người song sinh du hành bay đến và trở về hoặc điều đó

người láng giềng làm cùng với vũ trụ. Có hai sự kiện là: chuyển động tương đối của cặp song

sinh. Song có hai phương pháp khác nhau kể về chuyện này. Một quan điểm là sự thay đổi hệ

thống đọc số quán tính của nhà du hành vũ trụ tạo ra lực quán tính sẽ dẫn đến sự khác biệt về

tuổi tác. Một quan điểm khác là tác động của lực hấp dẫn vượt hơn hiệu quả liên quan đến sự

thay đổi hệ thống quán tính bởi trái đất. Bất kỳ quan điểm gì người láng giềng và vũ trụ đều cố

định đối với nhau, mặc dù là tính tương đối của chuyển động được bảo toàn nghiêm khắc. Sự

khác biệt về tuổi tác theo phản đề được giải thích độc lập với điều là người song sinh nào được

coi là đứng yên. Không nhất thiết phải bác bỏ thuyết tương đối.

Và bây giờ có thể đặt một câu hỏi thú vị. Rằng nếu vũ trụ không có gì ngoài hai con tàu vũ trụ A

và B thì sao? Chẳng hạn con tàu A sử dụng động cơ tên lửa của mình tăng tốc, hoàn thành

chuyến đi dài và trở về. Sẽ có chuyện các đồng hồ đồng thời gian trên hai con tàu tự hoạt động

như trước không?

Câu trả lời sẽ tùy thuộc ở chỗ quan điểm của ai về lực quán tính mà bạn kiên trì Edington hay

Dennit Xkiema? Quan điểm của Edington là có. Con tàu A tăng tốc so với hệ phổ không - thời

gian của vũ trụ, con tàu B là không. Hành vi của họ không cân xứng và dẫn đến sự khác biệt

bình thường về tuổi tác. Quan điểm của Xkiema là không. Có ý định nói về gia tốc chỉ so với các

thể vật chất khác. Trong trường hợp này các vật thể duy nhất là hai con tàu vũ trụ. Tình hình

hoàn toàn cân xứng. Và trên thực tế, trong trường hợp này không thể nói về hệ thống đọc số

quán tính bởi vì không có quán tính (ngoài quán tính cực kỳ yếu tạo ra bởi sự có mặt của hai

con tàu).

Khó mà nói trước rằng chuyện gì xảy ra trong vũ trụ mà không có quán tính, nếu như con tàu

tương đối khởi động các động cơ tên lửa của nó! Với tính thận trọng của người Anh Xkiema đã

biểu đạt rằng: "Cuộc sống hẳn là hoàn toàn khác trong một vũ trụ như vậy!"

Bởi vì hiện tượng chậm của đồng hồ của người song sinh du hành có thể được xem xét như một

hiện tượng trọng lực, bất kỳ thí nghiệm nào chỉ ra sự chậm trễ thời gian dưới tác động của

trọng lực đều là sự khẳng định gián tiếp phản đề cặp song sinh. Những năm gần đây đã có

được một số khẳng định như vậy nhờ phương pháp thí nghiệm nổi tiếng dựa trên cơ sở hiệu

ứng Mơcbaoơ. Nhà vật lý học người Đức trẻ tuổi Rudol Mơcbaoơ vào năm 1958 đã phát minh ra

phương pháp chế tạo "đồng hồ hạt nhân", với độ chính xác cực kỳ để đo thời gian. Bạn hãy hình

dung chiếc đồng hồ đánh tích tắc 5 lần trong một giây, còn những đồng hồ khác đánh tích tắc

sao cho cứ sau một triệu triệu tích tắc nó chỉ chậm một phần trăm tíc tắc. Hiệu ứng Mơcbaoơ

có khả năng phát hiện ngay rằng chiếc đồng hồ thứ hai chạy chậm hơn chiếc thứ nhất! Các thí

nghiệm có áp dụng hiệu ứng Mơcbaoơ đã chỉ ra rằng thời gian ở móng tòa nhà (nơi trọng lực

lớn hơn) trôi chậm hơn một chút so với trên mái nhà. Theo nhận xét của Gamop: "Một cô đánh

máy chữ làm việc tại tầng một của tòa nhà Empir Star Building (tòa nhà ở New York có 102

tầng - N.D.) già đi chậm hơn cô chị em gái song sinh làm việc ở tầng mái". Tất nhiên sự khác

biệt về tuổi tác này là rất nhỏ, nhưng là có thật và có thể đo được. Nhà vật lý học người Anh sử

dụng hiệu ứng Mơcbaoơ, đã phát hiện ra rằng đồng hồ hạt nhân bố trí tại mép một cái đĩa quay

nhanh đường kính cả thảy 15 cm làm chậm vòng quay của mình chút ít.

Đồng hồ đang quay có thể xem như người song sinh thay đổi không ngừng hệ thống đọc số

quán tính của mình (hoặc như người song sinh bị trường trọng lực tác động vào, nếu coi các đĩa

là đứng yên, còn vũ trụ thì quay). Thí nghiệm này là sự kiểm tra trực tiếp phản đề cặp song

sinh: Thí nghiệm trực tiếp nhất sẽ được thực hiện khi nào đồng hồ hạt nhân được đặt trên vệ

tinh nhân tạo sẽ quay với vận tốc lớn quanh trái đất. Sau đó vệ tinh trở lại và các số chỉ của

đồng hồ được so sánh với các đồng hồ khác còn ở lại trên trái đất. Tất nhiên khi nhà du hành vũ

trụ càng nhanh chóng tiến gần sẽ có thể tiến hành kiểm tra chính xác nhất sau khi giữ chắc

được đồng hồ hạt nhân bên mình đi vào cuộc hành trình vũ trụ xa xôi. Không một nhà vật lý

nào, ngoài giáo sư Ding nghi ngờ rằng số chỉ đồng hồ của nhà du hành vũ trụ sau khi trở về trái

đất sẽ không trùng chút ít với các số chỉ của đồng hồ hạt nhân để trên trái đất.

Và chúng ta cần luôn luôn sẵn sàng đến với những bất ngờ. Các bạn hãy nhớ đến thí nghiệm

của Maikenxơn và Moocly!

Các mô hình vũ trụ ^

Ngày nay không một nhà vật lý nào còn tranh cãi về thuyết tương đối hẹp, và chỉ còn ít người

còn tranh cãi về những cơ sở của thuyết tương đối tổng quát. Thực ra, thuyết tương đối tổng

quát đang còn nhiều vấn đề quan trọng vẫn chưa được giải quyết. Không nghi ngờ gì về điều

những quan sát và thí nghiệm ủng hộ thuyết này đang còn ít và không phải lúc nào cũng thuyết

phục. Nhưng thậm chí dẫu không có được sự khẳng định nào nói chung, thuyết tương đối tổng

quát vẫn dường như đầy hấp dẫn phi thường do những đơn giản hóa được đưa vào vật lý học.

Đơn giản hóa ư? Có thể đã có sự lạm dụng từ này đối với một lý thuyết trong đó toán học phát

triển được áp dụng đến nỗi có ai đó đã có lần nói rằng dường như trên thế giới có không quá 12

người có thể hiểu được nó (hiển nhiên con số đó bị rút bớt thậm chí vào thời kỳ ý kiến như vậy

đã có được sự thừa nhận). Công cụ toán học của thuyết tương đối thực sự phức tạp, song sự

phức tạp này cân bằng bởi sự giản đơn hóa phi thường của bức tranh chung. Ví dụ, các kiến

giải về lực hấp dẫn và lực quán tính đối với cùng một hiện tượng vừa đủ để làm cho thuyết

tương đối tổng quát có chiều hướng hiệu quả nhất khi hình thành quan điểm về thế giới.

Anhxtanh đã phát biểu tư tưởng này vào năm 1921 khi giảng về thuyết tương đối tại trường Đại

học Prinxton: "Khả năng giải thích sự bằng nhau bằng con số giữa lựa quan tính và trọng lực

bằng sự thống nhất bản chất của chúng tạo cho thuyết tương đối tổng quát, theo biện luận của

tôi, nhưng ưu việt trước các quan điểm của cơ học cổ điển, do vậy mà các khó khăn gặp phải ở

đây có thể xem là không lớn lắm ..."

Cái mà thuyết tương đối có chính là cái mà các nhà toán học ưa gọi là "vẻ kiều diễm". Đó cũng

chính là một tác phẩm nghệ thuật. Có lần Lorenxơ đã từng tuyên bố: "Mỗi người hâm mộ cái

đẹp đều muốn rằng cái đẹp phải là cái chính xác".

Trong chương này những quan điểm được xác lập cứng rắn của thuyết tương đối sẽ được đặt

sang một bên, và bạn đọc được đắm mình vào trong lĩnh vực tranh luận gay gắt, nơi các quan

điểm không hơn gì những giả thiết mà phải thừa nhận hoặc bác bỏ trên cơ sở những luận

chứng khoa học. Vậy vũ trụ nói chung là gì? Chúng ta đều biết rằng trái đất là hành tinh thứ ba

tính từ mặt trời trong hệ thái dương gồm chín hành tinh và mặt trời là một trong hàng trăm tỷ

ngôi sao tạo thành thiên hà chúng ta. Chúng ta không biết rằng trong lĩnh vực không gian mà

chúng ta có thể thám sát bằng những viễn vọng kính cực mạnh, đã loại ra những thiên hà khác

mà số lượng của chúng cũng phải tính đến hàng tỷ. Có tiếp tục điều đó đến vô cùng được

chăng? Số lượng thiên hà cũng là vô cùng? Hoặc giả không gian dù sao cũng phải có giới hạn

chứ? (Có thể là chúng ta nên nói "không gian của chúng ta", bởi vì nếu không gian của chúng ta

có giới hạn thì ai có thể nói rằng không tồn tại những không gian có giới hạn khác?)

Các nhà thiên văn học đang cố gắng để trả lời các câu hỏi đó. Họ đang xây dựng các mô hình

vũ trụ - những bức tranh tưởng tượng về thế giới nếu xem nó (thế giới) như một thể thống

nhất. Đầu thế kỷ 19 nhiều nhà thiên văn học cho rằng vũ trụ là vô hạn có vô số mặt trời. Không

gian được xem là không gian Ơcơlit. Các đường thẳng kéo dài đến vô cùng theo mọi hướng. Nếu

có một con tàu vũ trụ khởi hành theo một hướng bất kỳ và chuyển động theo đường thẳng, thì

cuộc hành trình của nó hẳn phải kéo dài không giới hạn và không bao giờ đến được đích (giới

hạn). Quan điểm này xuất hiện từ người Hy lạp cổ. Họ ưa nói rằng nếu một người lính ném cán

giáo xa mãi trong không gian thì anh ta không thể nào đạt tới điểm dừng, còn nếu có điểm

dừng như vậy trong tưởng tượng thì người lính có thể đến được đấy và ném giá xa hơn nữa!

Đã có sự chống đối lại quan điểm này. Nhà thiên văn học người Đức Henric Olbe đã nhận định

vào năm 1826 rằng nếu số mặt trời là vô cùng và những mặt trời này được phân bổ trong

không gian một cách ngẫu nhiên, thì đường thẳng kẻ từ trái đất theo một hướng bất kỳ cuối

cùng phải đi qua một ngôi sao bất kỳ. Điều đó có nghĩa là toàn bộ bầu trời đêm phải là một mặt

dầy đặc ra ánh sáng mở ảo. Chúng ta biết rằng điều đó không phải như vậy. Cần suy nghĩ cách

giải thích nào đó về bầu trời đêm mờ tối để giải thích cái mà ngày nay người ta gọi là phản đề

Olbe. Đa số các nhà thiên văn cuối thế kỷ 19 đầu thế kỷ 20 cho rằng số mặt trời là hạn chế.

Thiên hà của chúng ta, họ khẳng định, chứa toàn bộ mặt trời hiện hữu. Thế còn ngoài thiên hà

thì sao? Chẳng có gì cả! (Và chỉ vào giữa những năm 20 của thế kỷ này đã xuất hiện một chứng

minh không thể bác bỏ là có hàng triệu thiên hà trải dài cách chúng ta). Những nhà thiên văn

khác cho rằng ánh sáng từ các vì sao xa xăm, có thể được thể hiện bằng những dải bụi tinh vân

(tinh đoàn).

Các giải thích sắc sảo nhất thuộc về nhà toán học người Thụy điển V. K. Saclơ. Ông nói các

thiên hà tập hợp thành tinh đoàn, các tinh đoàn thành siêu tinh đoàn - siêu tinh đoàn thanh siêu

- siêu tinh đoàn và cứ như vậy cho đến vô cùng. Ở mỗi cấp độ tập hợp khoảng cách giữa các

tinh đoàn phát triển nhanh hơn là kích thước tính toán. Nếu điều đó đúng thì khi tiếp tục vạch

đường thẳng càng xa khỏi thiên hà chúng ta xác suất nó gặp thiên hà khác càng nhỏ. Đồng thời

chế độ tập hợp tinh đoàn đó là vô cùng, bởi vì giống như trước kia có thể nói rằng vũ trụ chứa

một số vô tận các vì sao. Trong các giải thích mà Saclơ dành cho phản đề Olbe không hề có

một sai lầm nào ngoại trừ có cách giải thích đơn giản hơn sau đây.

Mô hình đầu tiên của vũ trụ xây dựng, trên cơ sở lý thuyết thuyết tương đối được đề xuất bởi

chính Anhxtanh trong bài báo công bố vào năm 1917. Đó là một mô hình diễm lệ và tuyệt đẹp

mặc dù về sau Anhxtanh buộc phải khước từ nó. Ở trên đã giải thích rằng các trường trọng lực

là những đường cong cấu trúc không gian - thời gian được tạo thành do hiện diện của những

khối vật chất lớn. Bên trong mỗi thiên hà, theo đó có nhiều đường cong xoắn tương tự của

không gian thời gian. Thế còn các miền lớn của không gian rỗng giữa các thiên hà thì sao? Có

một quan điểm như sau. Khoảng cách từ các thiên hà càng lớn thì không gian càng trở nên

phẳng hơn (Ơcơlit hơn).

Nếu như vũ trụ là tự do khỏi bất kỳ vật chất nào thì không gian đã hoàn toàn là phẳng: song

một số người lại cho rằng trong trường hợp đó nói chung là vô nghĩa khi nói rằng nó có một cấu

trúc nào đó. Và cho dù trong trường hợp nào đi nữa vũ trụ của không gian - thời gian cũng

được trải ra không hạn chế theo tất cả các hướng.

Anhxtanh đã làm một luận giá. Ông nói chúng ta giả thiết rằng khối lương vật chất trong vũ trụ

là đủ lớn để bảo đảm cho tỉ suất cong tổng quát là dương. Không gian khi đó co hẹp lại theo tất

cả các hướng.

Không thể hiểu hoàn toàn điều đó nếu không đi sâu vào hình học bốn chiều phi Ơcơlit, nhưng có

thể nắm bắt tư duy đó dễ dàng nhờ mô hình hai chiều. Ta thử tưởng tượng một đất nước phẳng

ở đó chỉ có các thực thể hai số đo. Họ xem đất nước của mình là một mặt phẳng Ơcơlit. Thật

vậy, mặt trời của đất nước phẳng là nguyên nhân xuất hiện trên mặt phẳng đó các mô cao khác

nhau, nhưng đó chỉ là những mô mang tính địa phương không có ảnh hưởng gì đến độ phẳng

chung. Song có một khả năng khác mà các nhà thiên văn của đất nước này có thể mường

tượng ra. Có thể là mỗi mô cao ở địa phương tạo ra một tỉ suất cong nhỏ của toàn mặt phẳng

bằng cách là tác động tổng cộng của tất cả các mặt trời sẽ dẫn đến sự biến dạng của mặt

phẳng đó thành một cái gì đó giống như bề mặt của hình cầu lởm chởm. Bề mặt tương tự càng

trở nên vô hạn khiến bạn có thể chuyển động theo bất kỳ hướng nào mãi mãi và không bao giờ

đạt tới giới hạn. Người chiến sĩ của đất nước bằng phẳng không thể tìm thấy một chỗ nào xa

hơn mãi để anh ta có thể ném mũi dao phẳng của mình. Song bề mặt của đất nước là vô tận.

Nhà du hành hoàn thành chuyển đi theo đường thẳng khá lâu, cuối cùng lại trở về chính nơi

mình xuất phát.

Các nhà toán học nói rằng bề mặt tương tự là "eo". Tất nhiên là nó không có giới hạn. Giống

như không gian Ơcơlit vô tận, tâm của nó ở mọi nơi, không có chu vi. Dân cư của đất nước này

dễ dàng tin tưởng các "eo" đó có thuộc tính địa hình như vậy. Một phạm trù đã được nhắc tới:

chuyển động xung quanh hình cầu theo mọi hướng. Phương pháp kiểm tra khác là tô màu bề

mặt này. Nếu như cư dân của đất nước này xuất phát từ một chỗ nào đấy bắt đầu vẽ các ống

tròn ngày càng lớn, cuối cùng nó vẫn ở bên trong vạt trên mặt đối diện của hình cầu. Song hình

cầu này lớn và dần chiếm cứ một phần của nó, họ sẽ không có khả năng tiến hành những thử

nghiệm địa hình tương tự.

Anhxtanh giả thiết rằng không gian của chúng ta là một mặt ba chiều của một hình cầu biến

tướng (hình cầu bốn chiều). Thời gian trong mô hình không bị cong: đó là một tọa độ thẳng

chạy về phía sau vào một quá khứ xa xôi vô cùng và trải ra xa đến vô cùng về phía trước không

- thời gian bốn chiều, nó sẽ giống như một cấu trúc không - thời gian bốn chiều, nó sẽ giống

hình trụ biến tướng nhiều hơn, so với hình cầu biến tướng. Do nguyên nhân đó, mô hình như

vậy được gọi là mô hình "vũ trụ hình trụ". Tại bất kỳ thời điểm nào chúng ta sẽ nhìn thấy không

gian giống như một mặt cắt ngang ba chiều của một hình trụ biến tướng. Mỗi mặt cắt ngang

đều là mặt của hình cầu biến tướng.

Thiên hà của chúng ta chỉ chiếm một phần nhỏ của bề mặt này đến nỗi không thể thực hiện

được thí nghiệm về topo ngõ hầu chứng minh được tính chất co hẹp của nó. Nhưng về nguyên

tắc, khả năng chứng minh tính chất co hẹp ấy vẫn tồn tại. Đặt một kính viễn vọng đủ mạnh theo

một hướng nào đó có thể lấy tiêu cự trên một thiên hà nhất định, sau đó quay kính viễn vọng

theo hướng ngược lại sẽ nhìn thấy phía trên cùng của thiên hà đó. Nếu như tồn tại những con

tàu vũ trụ có vận tốc gần với vận tốc ánh sáng thì chúng có thể vẽ một vòng tròn quanh vũ trụ,

trong khi chuyển động với hướng bất kỳ theo đường thẳng nhất có thể có được. Không thể "tô

điểm" vũ trụ theo ngữ nghĩa của từ đó, nhưng có thể về thực chất đúng như vậy khi biên soạn

bản đồ hình cầu của vũ trụ với các kích thước ngày càng lớn. Nếu nhà bản đồ học được điều đó

đã lâu thì anh ta có thể phát hiện ra rằng anh ta như ở bên trong các hình cầu mà anh ta vẽ

bản đồ của nó.

Hình cầu đó sẽ trở nên ngày càng nhỏ đi tùy theo anh ta bám sát vị trí của mình, giống như các

vòng tròn bị nhỏ đi khi cư dân của đất nước bằng phẳng vẫn ở bên trong của vạt dấu.

Trong một số quan hệ mô hình phi Ơcơlit của Anhxtanh đơn giản hơn mô hình cổ điển, theo đó

không gian không bị uốn cong. Nó đơn giản hơn theo đúng ý nghĩa như có thể nói rằng vòng

tròn đơn giản hơn đường thẳng. Đường thẳng trải dài về vô cực theo hai phía, mà vô cực trong

toán học thì lại là cái rất phức tạp. Cái tiện lợi của vòng tròn là ở chỗ nó có giới hạn. Nó không

có đầu cuối, không ai phải lo lắng về điều là sẽ xảy ra chuyện gì với đường tròn tại vô cực.

Trong cái vũ trụ cẩn trọng của Anhxtanh không ai phải quan tâm về tất cả các đầu cuối tự do

khi ở vô cực, quan tâm về điều là trong vũ trụ học người ta thích gọi ra "các điều kiện hữu hạn".

Trong các vũ trụ trên của Anhxtanh không tồn tại vấn đề giới hạn bởi vì nó không có giới hạn.

Những mô hình vũ trụ khác hoàn toàn phù hợp với thuyết tương đối tổng quát đã được thảo luận

vào những năm 20. Một số trong đó có tính chất thậm chí lạ lẫm hơn vũ trụ hình trụ của

Anhxtanh. Nhà thiên văn học người Hà lan Villin de Xitơ đã chế ra mô hình co hẹp có giới hạn,

trong đó thời gian bị uốn cong giống như không gian. Càng nhìn qua không gian của de Xitơ xa

bao nhiêu, đồng hồ dường như càng chạy chậm bấy nhiêu. Nếu nhìn đủ xa có thể nhìn thấy

những miền mà thời gian hoàn toàn dừng lại, "giống như tuần trà của gã điên Sliapotkin" -

Edington viết - nó luôn luôn là sáu giờ chiều".

Không nhất thiết phải nghĩ rằng đang tồn tại một giới hạn nào đó - Bectơrang Rutxen giải thích

trong cuốn "Nhập môn thuyết tương đối". "Con người đang sống tại một nước mà người quan

sát của chúng ta coi là đất nước của lotofagơ (xứ sở của kinh thánh và lễ hội), sống đúng chế

độ kiêng cữ giống như chính người quan sát và dường như bản thân anh ta đông cứng lại trong

bất động vĩnh cửu. Trên thực tế bạn không bao giờ nhận biết về xứ sở của các lotofagơ này, bởi

vì cần phải có một thời gian lớn vô cùng để ánh sáng từ đó đi đến với bạn. Bạn có thể nhận biết

về những nơi ở không xa chỗ đó nhưng chính nó lại luôn luôn là chân trời". Tất nhiên, nếu bạn

thường về miền này trên một con tàu vũ trụ, dùng kính viễn vọng quan sát thường xuyên, bạn

hẳn nhìn thấy rằng tiếp theo mức độ đến gần đường đi của thời gian ở đó cũng dần dần giảm

tốc. Khi bạn đến nơi, mọi thứ sẽ chuyển động với vận tốc bình thường. Trái đất của các lotofagơ

giờ đây sẽ ở mép của chân trời mới.

Bạn có chú ý rằng khi máy bay bay thấp trên đầu, bay lên cao độ cao âm thanh động cơ có

giảm đi liền một chút không? Người ta gọi đó là hiệu ứng Dople theo tên gọi của nhà vật lý học

người Áo theo đạo thiên chúa tên là Johan Dople, người phát hiện ra hiệu ứng này vào giữa thế

kỷ 19. Nó càng dễ giải thích, khi máy bay tiến lại gần, thì sóng âm thanh từ động cơ làm dao

động màng trong nhiều hơn là khi máy bay không chuyển động. Điều đó làm tăng độ cao của

âm thanh. Khi máy bay đi xa tần suất dao động âm thanh mà tai bạn cảm nhận được càng ít đi.

Âm thanh trở nên thấp.

Chính là sự tuyệt đối như vậy xuất hiện trong trường hợp khi nguồn ánh sáng chuyển động

nhanh về phía các bạn hoặc tách khỏi các bạn. Đồng thời cái không đổi phải là vận tốc ánh sáng

(luôn luôn là không đổi), chứ không phải là độ dài sóng của nó. Nếu như bạn và nguồn sóng

chuyển động ngược chiều nhau, thì hiệu ứng Dople làm ngắn chiều dài của sóng ánh sáng,

đồng thời di động màu về phía đầu tấm của quang phổ. Nếu như bạn và nguồn sáng xa nhau thì

hiệu ứng Dople cho một sự di động tương tự về phía quang phổ màu đỏ.

Gamop ở một trong những bài giảng đã kể lịch sử (không nghi ngờ gì nữa mà là một giai thoại)

với hiệu ứng Dôple, một hiệu ứng quá tốt để khỏi phải dãn nó ra đây. Điều đó xảy ra, dường

như, bởi một nhà vật lý học nổi tiếng người Mỹ từ trường đại học Giôn Hôpkin, Rơbe Vut, người

kiên trì ở Bantimo về sự chuyển dần sang ánh sáng màu đỏ. Trước trọng tài, Vut trên cơ sở

hiệu ứng Dôple đã giải thích rõ ràng rằng do vận tốc lớn của chuyển động mà xuất hiện sự

chuyển dịch màu đỏ sang màu tím của quang phổ, do đó mà anh ta đã cảm thụ như màu xanh.

Trọng tài nghiêng về biện luận của Vut nhưng lại bất ngờ có một sinh viên của Vut mà cách đây

không lâu Vut đã đánh trượt. Anh ta tính nhanh ra vận tốc cần phải có để ánh lửa đèn chiếu từ

màu đỏ thành màu xanh. Trọng tài từ chối việc quy lỗi ban đầu và phạt Vut vì vượt quá tốc độ.

Dôple nghĩ rằng hiệu ứng phát hiện giải thích màu thấy được của các vì sao xa xăm: các ngôi

sao màu đỏ phải chuyển động từ phía trái đất, các ngôi sao màu xanh da trời thì về phía trái

đất. Như đã thấy vấn đề không phải như vậy (những màu này được giải thích bởi những nguyên

nhân khác). Vào những năm 20 của thế kỷ, chúng ta đã phát hiện ra rằng, ánh sáng từ các

thiên hà ở xa có sự dịch chuyển rõ ràng sang phía đỏ mà sự di chuyển này không thể giải thích

đủ sức thuyết phục khác hơn là cho rằng các thiên hà này chuyển động từ phía trái đất. Hơn

nữa sự di chuyển đó tăng lên trung bình tỷ lệ với khoảng cách từ thiên hà đến trái đất. Nếu như

đến thiên hà A xa hơn hai lần so với đến thiên hà B, từ sự di chuyển từ A lớn hơn chúng hai lần

của sự di chuyển màu đỏ từ B: Theo khẳng định của nhà thiên văn học người Anh Fret Hoy sự

di chuyển màu đỏ đối với tính toán trong chòm sao quả tạ (Hyđia) chứng minh rằng tinh đoàn

đó đi xa trái đất với vận tốc lớn bằng khoảng 61000 km/giây.

Người ta đã tìm cách giải thích khác nhau không phải bằng hiệu ứng Dôple, mà bằng phương

pháp khác nào đó. Theo lý thuyết "mệt mỏi ánh sáng" thì ánh sáng càng đi xa, tần số dao động

của nó càng nhỏ (Đó là một dẫn dụ tuyệt vời của giả thuyết ad hoc, tức của giả thuyết chỉ liên

quan với hiện tượng thường xuyên đó, bởi vì không có một minh chứng khác có lợi cho nó). Có

cách giải thích khác cho rằng ánh sáng đi qua lớp bụi vũ trụ sẽ dẫn đến xuất hiện sự di chuyển.

Trong mô hình của de Xitơ sự di chuyển đó thấy được rất rõ từ tỉ suất cong của thời gian.

Nhưng sự giải thích đơn giản nhất phù hợp tốt nhất với thực tế đã biết khác là ở chỗ, sự di

chuyển màu đỏ trên thực tế minh chứng về sự chuyển động có thực của các thiên hà. Xuất phát

từ tiền đề đó mà chẳng bao lâu đã phát triển một seri mới các mô hình "vũ trụ mở rộng".

Song sự mở rộng này không có nghĩa là chính các thiên hà tự mở rộng (dãn nở) hoặc là (như

bây giờ người ta cho rằng như vậy) khoảng cách giữa các thiên hà trong các tính toán tăng lên.

Như mọi người đều biết, sự mở rộng này kéo theo sự tăng lên của khoảng cách giữa các tính

toán. Các bạn hãy hình dung một đống bột lớn trong đó bao gồm hàng trăm hạt Izumin. Mỗi hạt

Izumin là một tinh đoàn. Nếu đống bột đó đưa vào lò, nó sẽ dãn nở đều theo mọi hướng, nhưng

kích cỡ của Izumin vẫn như cũ. Khoảng cách giữa các Izumin tăng lên. Không một Izumin nào

được gọi là trung tâm của sự dãn nở. Từ quan điểm về hạt Izumin riêng lẻ bất kỳ các hạt

Izumin càng lớn vận tốc biểu kiến về sự tách xa của nó càng lớn.

Mô hình vũ trụ của Anhxtanh là tĩnh. Điều đó được giải thích rằng ông đã phát triển mô hình này

trước khi các nhà thiên văn học phát hiện ra sự dãn nở (mở rộng) của vũ trụ. Để đề phòng sự

cuốn hút của vũ trụ từ các lực từ trước và sự diệt vong của nó, Anhxtanh buộc phải giả thiết cho

mô hình của mình rằng còn một lực nữa (ông đưa vào mô hình của mình với tên gọi là lực

thường xuyên của vũ trụ) mà vai trò của nó là đẩy và giữ các vì sao ở một khoảng cách nhất

định với nhau. Những tính toán sau này được thực hiện đã chỉ ra rằng mô hình của Anhxtanh là

không ổn định tựa như đồng tiền đứng nghiêng. Một tác động rất nhỏ sẽ làm nó đổ về bên phải

hoặc bên trái, mà đổ về bên phải thì ứng với vũ trụ giãn nở, mà đổ về bên trái thì ứng với vũ trụ

co rút. Sự phát hiện ra di động màu đỏ đã chỉ ra rằng vũ trụ trong bất kỳ trường hợp nào đều

không bị co rút, các nhà vũ trụ học thiên về các mô hình vũ trụ dãn nở.

Người ta đã xây dựng các mô hình toàn năng về vũ trụ dãn nở. Như nhà bác học Liên xô (cũ)

Alecxăngđrơ Phơnitman và giáo sĩ người Bỉ tên là Gioocgiơ Lemét đã xây dựng nên hai mô hình

nổi tiếng nhất. Có mô hình không gian được xem là co rút (tỉ suất cong là dương), mô hình khác

lại xem là không co rút (tỉ suất cong là âm), ở mô hình thứ ba vấn đề về sự co rút không gian

lại để ngỏ. Một trong những mô hình được Edington đề nghị và đã được mô tả trong cuốn sách

khá hấp dẫn có tên là "Vũ trụ giãn nở". Mô hình của ông về thực hành rất giống với mô hình của

Anhxtanh, nó bị co rút, giống như quả cầu bốn chiều lớn và dãn nở đều theo cả ba số đo về

không gian. Song, hiện nay các nhà thiên văn không tin rằng không gian bị co rút. Như mọi

người đều biết mật độ vật chất trong không gian không đủ để tỉ suất cong là dương. Các nhà

thiên văn ưa quan niệm vũ trụ là không bị co rút hoặc vũ trụ vô cùng với tỉ suất cong tổng quát

là số âm giống như bề mặt của yên ngựa.

Bạn đọc không nên nghĩ rằng nếu bề mặt hình cầu có tỉ suất cong là dương, thì bên trong bề

mặt này sẽ có tỉ suất cong là âm. Tỉ suất cong của mặt hình cầu là dương không phụ thuộc vào

điều là nhìn nó từ phía nào, từ ngoài vào hay từ trong ra ngoài - tỉ suất cong âm của bề mặt

yên ngựa là do tại một điểm bất kỳ của nó bề mặt này có tỉ suất cong khác nhau. Nó là lõm nếu

bạn kẻ trên đó bằng tay từ phần sau sang phần trước, và lồi nếu bạn kẻ tay từ mép này sang

mép khác. Tỉ suất cong này được biểu thị bằng số dương, tỉ suất cong khác laị biểu thị bằng số

âm. Để có được tỉ suất cong của mặt này tại điểm đã biết hai số này cần được nhân lên. Nếu tại

mọi điểm số đó là âm, như cần phải có khi bề mặt tại điểm bất kỳ bị cong theo kiểu khác thì

người ta nói rằng bề mặt đó có tỉ suất cong là âm. Bề mặt khoanh tròn (hình cái trống) là một

thí dụ nổi tiếng khác của bề mặt có tỉ suất cong âm. Tất nhiên các bề mặt tương tự là những

mô hình thô sơ của không gian ba chiều có tỉ suất cong âm.

Có thể là với sự xuất hiện của các kính thiên văn công suất lớn hơn người ta sẽ phải giải quyết

vấn đề xem là tỉ suất cong nào của vũ trụ là dương, là âm hoặc bằng không. Kính viễn vọng cho

phép nhìn thấy các thiên hà chỉ là trong một dựng khối mặt cầu nhất định. Nếu các thiên hà

được phân bố một cách ngẫu nhiên và nếu không gian là Ơcơlit (tỉ suất cong bằng không) thì số

thiên hà bên trong mặt cầu tương tự phải luôn luôn tỉ lệ với lập phương bán kính của mặt cầu

này. Nói cách khác, nếu xây dựng một kính thiên văn có thể nhìn xa gấp đôi so với bất kỳ kính

thiên văn nào trước đó thì số thiên hà nhìn thấy được phải tăng lên từ năm đến 8. Nếu bước

nhảy đó là nhỏ hơn thì điều đó có nghĩa là tỉ suất cong của vũ trụ là số dương, nếu lớn hơn thì

là số âm.

Có thể nghĩ rằng cần phải là ngược lại, nhưng chúng ta hãy xem xét trường hợp của mặt hai số

đo với tỉ suất cong là dương và âm. Giả sử từ một tấm cao su phẳng ta cất một vòng tròn. Trên

đó dán các Izumin cách nhau nửa cm một. Để cho tấm cao su đó có hình dạng mặt cầu, cần ép

nó lại và các 1/umin càng xích lại gần nhau hơn. Nói khác đi, nếu trên bề mặt hình cầu các

Izumin cách nhau nửa cm một thì cần số Izumin ít hơn. Còn nếu trải tấm cao su lên mặt yên

ngựa thì các Izumin dãn ra trên khoảng cách lớn, tức là muốn trên bề mặt yên ngựa giữ khoảng

cách giữa các Izumin nửa cm thì phải có nhiều Izumin hơn. Hơi có vấn đề đạo đức ở chỗ này khi

nói vui rằng nếu bạn muốn mua một chai bia, bắt buộc bạn phải nói với người bán hàng rằng

bạn muốn mua một chai bia có không gian cong là âm, chứ không phải là dương!

Với sự xuất hiện của mô hình đó ngay lập tức vấn đề phản đề Olbe về ánh sáng của bầu trời

đêm đã được làm sáng tỏ. Mô hình tĩnh của Anhxtanh ít hỗ trợ về mặt này. Thực vậy, nó chỉ

chứa đựng một số hữu hạn số lượng mặt trời, nhưng do độ dẹt của không gian trong mô hình

ánh sáng của các mặt trời này buộc phải lan tỏa mãi mãi toàn vũ trụ bằng cách uốn cong

đường đi của mình phù hợp với tỉ suất cong cục bộ của không gian thời gian. Kết quả là bầu trời

đêm tỏa sáng giống như trong trường hợp có vô số mặt trời nếu không giả thiết rằng vũ trụ

đang còn quá trẻ, nhiều ánh sáng chỉ có thể thực hiện một số hữu hạn các vòng xoáy.

Khái niệm vũ trụ dãn nở gạt bỏ rất đơn giản vấn đề này. Nếu các thiên hà xa xôi rời xa trái đất

với vận tốc tỉ lệ với khoảng cách đến chúng thì số lượng đầy đủ ánh sáng đến được trái đất phải

giảm thiểu. Nếu một thiên hà ở đủ xa vận tốc của nó có thể vượt quá vận tốc ánh sáng khi ánh

sáng cách nó nói chung không bao giờ đạt tới chỗ chúng ta. Ngày nay nhiều nhà thiên văn cho

rằng nếu như vũ trụ dãn nở, thì hẳn đã không có sự khác biệt thực sự nào giữa ngày và đêm.

Hiện tượng vận tốc của các thiên hà xa xôi đối với trái đất có thể vượt quá vận tốc ánh sáng

dường như là phá vỡ nguyên lý: không một vật thể vật chất nào có thể chuyển động nhanh hơn

vận tốc ánh sáng. Nhưng như chúng ta đã thấy ở chương 4 nguyên lý này có hiệu lực chỉ trong

các điều kiện phù hợp với các yêu cầu của thuyết tương đối hẹp. Trong thuyết tương đối tổng

quát cần diễn đạt lại như sau: không một tín hiệu nào có thể truyền đi nhanh hơn ánh sáng.

Song vẫn đang có vấn đề quan trọng còn tranh cãi như sau: trên thực tế có thể có các thiên hà

xa xôi khắc phục được rào cản ánh sáng và sau khi trở thành không nhìn thấy được, vẫn luôn

luôn biến mất do tường ngăn của con người, thậm chí nếu như con người có bố trí được một

kính viễn vọng cực mạnh mà ta có thể hình dung ra. Một số chuyên gia cho rằng vận tốc ánh

sáng trên thực tế là giới hạn và chính bản thân các thiên hà xa xôi nhất cũng dễ bị xỉu đi hơn

mà không bao giờ hoàn toàn nhìn thấy được (tất nhiên trong điều kiện con người phải bố trí

những máy móc đủ nhậy cảm để quan sát chúng).

Những thiên hà già nua, như ai đó đã có lần nhận xét, không bao giờ bị chết đi. Đơn giản là

chúng dần dần biến mất. Song dễ hiểu là không một thiên hà nào biến đi với ý nghĩa là vật chất

của vũ trụ bị biến mất. Đơn giản là nó đạt được vận tốc không thể phát hiện bằng kính viễn

vọng trên trái đất. Thiên hà biến mất tiếp tục nhìn thấy được từ các thiên hà khác ở gần với nó.

Đối với mỗi thiên hà tồn tại một "đường chân trời quang học" kiểu như một ranh giới hình cầu

mà kính viễn vọng không thể xuyên thủng. Các đường chân trời hình cầu này đối với hai thiên hà

bất kỳ không trùng nhau. Các nhà thiên văn tính rằng các điểm mà sau đó thiên hà bắt đầu biến

đi từ trường ngắm của chúng ta nằm ở khoảng xa gấp đôi so với miền đạt được của bất kỳ kính

viễn vọng quang học hiện đại nào. Nếu như giả thiết đó là đúng thì bấy giờ đã nhìn thấy một

phần tám của tất cả các thiên hà mà một thời điểm nào đó có thể quan sát được.

Nếu vũ trụ dãn nở (không quan trọng là không gian phải phẳng không dẹt hoặc là dẹt) thì xuất

hiện vấn đề hóc búa là như vậy. Vậy thì vũ trụ trước kia giống cái gì? Có hai cách thức khác

nhau trả lời câu hỏi này, hai mô hình vũ trụ hiện đại. Cả hai mô hình đều được đề cập ở chương

sau.

Vụ nổ hoặc là trạng thái ổn định? ^

Bạn thử hình dung một bức tranh vũ trụ từ từ dãn nở, sau đó làm ngược lại như xảy ra trên

màn ảnh. Rõ ràng là trong "quá khứ phủ đầy bóng tối và không cùng của thời gian" như có lần

Sexpia đã nói, đã từng có lúc số lượng vật chất tập trung vào một khối vật nhỏ. Có thể là toàn

bộ quá trình dãn nở đã bắt đầu nhiều tỉ năm trước đây với một vụ nổ lớn đầu tiên. Đó là quan

điểm vụ nổ lớn đầu tiên được Lemet đề xuất và ngày nay đã có được người bảo vệ nhiệt thành

nhất mà đại biểu là Gamop.

Gamop trong cuốn sách "sự tạo thành vũ trụ" đã bảo vệ thuyết phục học thuyết của mình.

Lemet cho rằng vụ nổ xảy ra chừng năm tỉ năm trước đây, say mê đánh giá độ tuổi của vũ trụ

vẫn thiên về phía tăng dần lên. Hiện nay người ta cho rằng độ tuổi từ 20 đến 25 tỉ năm là gần

đúng nhất. Như vậy, theo Gamop đã có thời kỳ toàn bộ vật chất trong vũ trụ tập trung trong một

quả cầu đơn nhất khá đậm đặc của một khối vật chất gọi là Item (là tên gọi cổ Hy lạp của khối

vật chất nguyên thủy). Vậy thì nó từ đâu mà ra? Gamop cho rằng nó được tạo thành do kết cấu

của sự dồn nén từ trước của vũ trụ. Về giai đoạn dồn nén này, đương nhiên chúng ta không thể

nhận biết được điều gì. Giống như mô hình của Lemet, mô hình Gamop bắt đầu từ một vụ nổ

được gọi là "thời điểm tạo thành", nhưng không phải với ý nghĩa rằng tôi không có gì tạo ra một

cái gì đó mà là với ý nghĩa tạo ra một dạng từ một cái gì đó không có hình dạng trước đó.

Ngay trước vụ nổ nhiệt độ và áp suất của Item là rất cao. Sau đó xảy ra vụ nổ kì lạ không thể

tưởng tượng nổi. Trong cuốn sách của mình, Gamop đã phân tích chi tiết mọi cái có thể xảy ra

sau đó. Cuối cùng từ bụi và khí dãn nở mà tạo thành các ngôi sao. Sự dãn nở của tương đối

ngày nay là sự tiếp tục của vận động tổng hợp vật chất bởi vụ nổ ban đầu. Gamop cho rằng sự

vận động đó không bao giờ ngừng.

Hiện nay, cạnh tranh với lý thuyết vụ nổ của Gamop chủ yếu là lí thuyết vũ trụ ổn định được đề

xuất vào năm 1948 bởi ba nhà bác học của trường Đại học Cambrit là Hecman Bunđi, Tomat

Hon và Fut Hoy. Bảo vệ thuyết phục nhất lý thuyết này là cuốn sách phổ biến của Hoy "Bản chất

của vũ trụ". Giống như trong lý thuyết của Gamop, trong lý thuyết trạng thái ổn định, người ta

chấp nhận sự dãn nở của vũ trụ và không gian được xem là mở và vô cùng, chứ không phải là

đóng kín như mô hình của Edington. Khác với lý thuyết của Gamop, lý thuyết này không bắt đầu

từ vụ nổ, trong đó, nói chúng là không có điểm khởi đầu. Không phải ngẫu nhiên mà đầu đề

cuốn sách của Hoy khác với đầu đề cuốn sách của Gamop chỉ là sự thay đổi một từ. Vũ trụ của

Hoy không có thời điểm tạo thành để như chúng ta thấy càng nhanh chóng có được vô số các

kiến tạo nhỏ. Hoy đã xây dựng công thức đó như sau. "Mỗi đám mây thiên hà, mỗi ngôi sao,

mỗi nguyên tử đều có bắt đầu, nhưng không phải là vũ trụ nói chung. Vũ trụ là một cái gì đó lớn

hơn các bộ phận của nó, mặc dù kết luận này có thể tỏ ra là bất ngờ".

Vũ trụ ổn định luôn luôn ở trong trạng thái chuyển động từ tốn. Nếu như chúng ta có thể kể lại

hàng trăm nghìn tỉ năm trước đây, chúng ta hẳn đã thấy được những kiểu dáng của các thiên

hà đang phát triển trong bất kỳ bộ phận nào của vũ trụ, chứa đựng chính những kiểu dáng của

các vì sao đang già đi, mà một số trong đó có cùng kiểu dáng của các hành tinh quay xung

quanh các vì sao đó. Và trên một số hành tinh ấy, có thể là tồn tại những dạng tương tự của sự

sống. Có thể là tồn tại vô số hành tinh trên đó vào chính thời khắc này (độc lập với điều nó có ý

nghĩa gì) những thực thể có trí tuệ phóng các nhà du hành vũ trụ đầu tiên của mình vào vũ trụ.

Vũ trụ là đơn nhất (theo nghĩa khái quát nhất của từ đó) trong không gian vô tận và thời gian vô

tận. Sự dãn nở của nó không phải là hậu quả của vụ nổ. Đó là do một lực đẩy nào đó mà bản

chất của nó đang còn được tranh luận sôi nổi. Lực này giống như hằng số vũ trụ còn lại của

Anhxtanh. Nó đẩy các thiên hà ra cho đến khi chúng còn chưa biến mất khỏi "trường ngắm" khi

vượt qua rào cản ánh sáng. Hiển nhiên, sự biến mất này xảy ra từ điểm ngắm của người quan

sát trong thiên hà chúng ta. Khi người quan sát từ trái đất nhìn thấy thiên hà X và láng giềng

của nó rời xa nhau, người quan sát từ thiên hà X nhìn thấy cũng như vậy từ thiên hà chúng ta.

Một vấn đề quan trọng đặt ra. Nếu tương đối luôn luôn dãn nở và sẽ tiếp tục dãn nở, thì tại sao

nó lại đậm đặc hơn? Rõ ràng là không có cách khác giải thích trạng thái ổn định, ngoài cách giả

thiết rằng vật chất mới được tạo thành liên tục, có thể là dưới dạng hydro - một nguyên tố đơn

giản nhất trong các nguyên tố. Theo Hoy, nếu như trong một thùng không gian (hầu như không

thể viết về quan điểm của Hoy mà không tán đồng sử dụng cách hình dung đó) cứ mỗi nguyên

tử hyđro được tạo ra trong khoảng 10 triệu năm, thì hẳn là sẽ duy trì được vũ trụ trong trạng

thái ổn định. Đương nhiên, vận tốc mà với vận tốc vật chất được tạo thành cần phải vừa vặn

sao cho cân bằng được quá trình giảm thiểu mật độ. Vậy thì các nguyên tử hyđro lấy từ đâu ra?

Không ai dám trả lời vấn đề này. Đó chính là điểm khởi đầu lý thuyết của Hoy. Nếu như kiên trì

lòng tin vào việc thành tạo từ không có gì, thì đó là điểm mà trong lý thuyết trạng thái ổn định

đã xảy ra, và đáng tin hơn là sự sáng tạo diễn tiến không ngừng.

Cả hai lý thuyết đang tranh chấp - lý thuyết vụ nổ và lý thuyết trạng thái ổn định - đều có thể

phù hợp với tất cả các sự kiện đã biết về vũ trụ (chính xác hơn là với những điều mà ở thời điểm

này người ta xem là đã biết), cũng như với tất cả các nguyên lí của thuyết tương đối. Hiện nay

cả hai lý thuyết đều được chấp nhận như nhau. Hằng năm những quan sát mới nào đó khẳng

định lý thuyết vụ nổ và tạo ra sự nghi ngờ đối với lý thuyết trạng thái ổn định, song chúng đều

được cân bằng bởi các kết quả quan trắc mới, khẳng định lý thuyết trạng thái ổn định và tạo ra

sự nghi ngờ đối với lý thuyết vụ nổ lớn. Nếu các bạn đọc sách báo của người bảo vệ lý thuyết

nào đó bạn sẽ thấy rằng tác giả viết sao cho mọi số liệu thiên về bên này hoặc bên kia. Bạn hãy

cảnh giác. Khi các chuyên gia bất đồng ý kiến bạn hãy tỉnh táo để khỏi thiên về ý kiến của ai

nếu như bạn chưa thực sự cảm nhận về tính thuyết phục của nó. Gamôp công khai viết về cảm

tình của mình đối với lý thuyết vụ nổ. Cũng như vậy, Hoy công khai ủng hộ lý thuyết trạng thái

ổn định (tôi được biết rằng hiện nay các nhà tâm lý học vẫn chưa giải thích hai hiện tượng trên

cơ sở tâm thần của những người bảo vệ chúng, song có thể tin rằng cuối cùng sẽ dẫn tới điều

đó). Nếu như không có thiện cảm thì về mặt lý trí còn phải chờ đợi cho đến khi các nhà thiên

văn học đưa những cứ liệu đầy đủ để có thể quyết đạp ngã theo lý thuyết nào.

Còn có nhiều mô hình vũ trụ khác nữa. Một số được đề xuất một cách nghiêm túc, số khác thì

như thể trò đùa. Có mô hình trong đó không gian xoắn lại giống hình phễu.

Nếu như bạn đi vòng quanh một vũ trụ như vậy một lượt, bạn sẽ lại ở chỗ bắt đầu cuộc hành

trình, có điều tất cả sẽ đạo ngược như ở trong gương. Đương nhiên bạn có thể đi vòng quanh

nó một lần nữa và trở về chỗ cũ. Có cả mô hình vũ trụ hình trụ trong đó các vụ nổ luân phiên

thời kỳ dãn nở và thời kỳ dồn nén. Chu kì đó được lặp lại không chết như kiểu phục sinh vĩnh

hằng của các nhà triết học và tôn giáo phương đông (cũng xin nói rằng Etga Po trong tác phẩm

về vũ trụ khác lạ của mình dưới tiêu đề "Ơrêka" (tìm ra rồi!), mà ông đã đánh giá cao, đã bảo

vệ mô hình vũ trụ hình trụ hiện nay dạng ở giai đoạn dồn nén). Cực đoan nhất trong số các mô

hình, như đã biết, là mô hình "tương đối động học" được đề xuất bởi nhà thiên văn học thuộc

trường đại học Oxphit là Eđua Min. Trong đó chấp nhận cả hai dạng thời gian rất khác nhau. Ở

một thuật ngữ (khái niệm) thời gian tuổi và kích thước vũ trụ là vô tận và nó hoàn toàn không

dãn nỡ. Ở thuật ngữ thời gian khác nó lại có kích thước hữu hạn và dãn nở ngày từ lúc thành

tạo. Dạng thời gian nào được chọn làm chủ yếu là vấn đề thuận tiện mà thôi.

Nhà toán học người Anh là Etmun Uytcơ đã có lần đề nghị (dưới hình thức tếu) một lý thuyết vũ

trụ co thắt, trong đó vũ trụ hữu hạn không chỉ bị co lại, mà vật chất không ngừng đi về nơi mà

từ đó nó đến theo lý thuyết của Hoy. Thế giới cuối cùng sẽ hoàn toàn biết mất, nhưng không

kèm theo vụ nổ, mà là tiếng thở hắt ra cuối cùng. "Lý thuyết này có ưu điểm - Uytcơ viết - nó

cho một bức tranh rất đơn giản về sự chấm hết của vũ trụ". Tất nhiên một lý thuyết như vậy

cần được giải thích tại sao chúng ta quan sát thấy không phải là sự xê dịch màu tím, mà là màu

đỏ trong quang phổ của các thiên hà, nhưng làm điều đó thì dễ dàng. Muốn vậy cần phải vay

mượn ở de Xitơ một trong những phương pháp và giả thiết rằng thời gian tăng tốc đường đi của

nó (một trong những nhà vật lý nhận xét vui rằng điều đó chỉ có thể giải thích là tại sao chúng

ta trở nên già đi, vì dường như một năm trôi đi nhanh như một tháng - Trên thực tế nó trôi

nhanh như tháng) ánh sáng đến với trái đất từ thiên hà xa xăm lúc đó chính là ánh sáng của

thiên hà đã hàng tỉ năm trước đó, khi các dao động điện từ xảy ra chậm dần đi. Điều đó có thể

dẫn đến sự di động màu đỏ đủ lớn để vượt qua sự xê dịch Dôpl sang miền trên của quang phổ.

Đương nhiên, thiên hà càng ở xa, nó càng già hơn và đỏ hơn.

Thực tế có thể xây dựng công thức mô hình vũ trụ co thắt chỉ ra rằng các phương trình thuyết

tương đối mềm dẻo biết nhường nào. Chúng có thể phù hợp với nhiều mô hình vũ trụ khác

nhau, mỗi mô hình đó có thể giải thích mọi điều quan sát được hiện nay. Thật là thú vị nhận

thấy rằng nhà triết học người Anh Frenxit Bacơn vào năm 1620 trong tác phẩm của mình

"Novum Organum" (Tổ chức mới) đã viết : "Về bầu trời có thể kiến tạo nhiều giả thuyết khác

nhau, song những giả thuyết phải phù hợp với các hiện tượng". Vũ trụ học hiện đại không thay

đổi về mặt này, cho dù số lượng hiện tượng được quan sát là rất lớn; như vậy, có cơ sở để giả

thuyết rằng các mô hình hiện đại càng tiến dẫn tới chân lý hơn là các mô hình cũ. Tất nhiên,

các mô hình vũ trụ phải trải qua hành trăm năm dựa trên cơ sở những số liệu thiên văn còn

chưa được tới hiện nay có thể hoàn toàn không thích hợp với bất kỳ mô hình nào của chúng ta

mà giờ đây đang được nghiên cứu nghiêm túc.

Có câu chuyện vui nho nhỏ của nhà văn Ieclan lãnh chúa Danxen (trong cuốn sách của ông

nhan đề "Con người ăn thịt phượng hoàng" trong đó Atlas, kể lại cho Đanxen chuyện xảy ra

rằng vào một ngày khi nhờ có khoa học những người chết thôi tin vào mô hình vũ trụ cổ Hylạp,

Atlas nói rằng nhiệm vụ của chàng khá là đần độn và phiền toái. Chàng bị lạnh, bởi vì phải đeo

trên cổ cực nam của trái đất, còn hai tay chàng luôn luôn bị ướt bởi hai đại dương. Nhưng

chàng tiếp tục thực hiện nhiệm vụ của mình cho đến khi loài người vẫn tin vào chàng.

Sau đó, Atlas buồn bã nói thế giới bắt đầu trở nên "quá thông thái". Atlas quyết định rằng mình

không còn cần thiết nữa, chàng đã để lại thế giới và ra đi.

"Nhưng, Atlas nói, đầy vẻ suy nghĩ, trăn trở. Song tôi đã ngạc nhiên sâu sắc; ngạc nhiên về

điều đã xảy ra khi tôi đã làm điều đó.

"Vậy điều gì đã xảy ra?" "Tuởng như không có gì. Đơn giản là không có gì cả".

Trong cuốn sách này tôi có ý định kể một câu chuyện về điều đã xảy ra do kết quả của sự kiện

gần với chúng ta hơn khi thượng đế Niutơn của chuyển động tuyệt đối, sau đó Anhxtanh đã để

lại trái đất cho chúng ta và ra đi. Với trái đất không có gì đặc biệt xảy ra cả, chí ít là đang như

vậy. Nó tiếp tục quay xung quanh trục của nó, căng ta theo xích đạo và quay xung quanh mặt

trời. Nhưng trong vật lý học dù sao cũng có cái gì đó đã xảy ra. Khả năng lý giải của vật lý học,

khả năng dự đoán của nó và hơn thế nữa khả năng thay đổi bộ mặt trái đất về phía tốt hoặc

xấu đã lớn hơn nhiều so với bất kỳ thời gian nào trước đây.

Bạn đang đọc truyện trên: Truyen2U.Pro

#science