trao đổi chất và năng lượng

Màu nền
Font chữ
Font size
Chiều cao dòng

130

Chương 8

Khái niệm về sự trao đổi chất và

trao đổi năng lượng

Trao đổi chất và trao đổi năng lượng là bản chất của hoạt động sống

của mọi cơ thể sinh vật, là biểu hiện tồn tại sự sống. Sự trao đổi chất của

cơ thể luôn gắn liền với sự trao đổi và chuyển hóa năng lượng. Chính vì

vậy, trao đổi chất và trao đổi năng lượng là hai mặt của một quá trình liên

quan chặt chẽ với nhau.

8.1. Khái niệm chung về sự trao đổi chất

Cơ thể sống tồn tại, phát triển trong môi trường và không ngừng liên

hệ mật thiết với môi trường đó. Nó hấp thụ các chất khác nhau từ môi

trường ngoài, làm biến đổi các chất đó và một mặt tạo nên các yếu tố cẩu

tạo của bản thân cơ thể sống, mặt khác lại thải vào môi trường ngoài các

sản phẩm phân giải của chính cơ thể cũng như các sản phẩm hình thành

trong quá trình sống của cơ thể. Quá trình đó thực hiện được là do các biến

đổi hóa học liên tục xảy ra trong cơ thể. Người ta gọi toàn bộ các biến đổi

hóa học đó là sự trao đổi chất.

Sự trao đổi chất bao gồm nhiều khâu chuyển hóa trung gian. Các

quá trình này xảy ra phức tạp trong từng mô, từng tế bào bao gồm 2 quá

trình cơ bản là đồng hóa (tổng hợp) và dị hóa (phân giải) tạo nên chu kỳ

trao đổi chất liên tục giữa chất nguyên sinh và chất nhận vào.

Quá trình đồng hóa là sự hấp thụ các chất mới từ môi trường bên

ngoài, biến đổi chúng thành sinh chất của mình; biến đổi các chất đơn

giản thành chất phức tạp hơn, sự tích lũy năng lượng cao hơn. Đây là quá

trình biến đổi các chất không đặc hiệu (các chất hữu cơ của thức ăn như

glucid, lipid, protein) từ các nguồn khác nhau (thực vật, động vật, vi sinh

vật) thành các chất hữu cơ khác (glucid, lipid, protein) đặc hiệu của cơ thể.

Đặc điểm của quá trình này là thu năng lượng. Năng lượng cần thiết cung cấp

cho các phản ứng tổng hợp trên chủ yếu ở dạng liên kết cao năng của ATP.

Quá trình dị hóa là quá trình ngược lại của quá trình đồng hóa, là

sự biến đổi các chất phức tạp thành các chất đơn giản và giải phóng năng

lượng cần thiết cho hoạt động sống. Như vậy đây là quá trình phân giải

các chất dự trữ, các chất đặc trưng của cơ thể thành các sản phẩm phân tử

nhỏ không đặc trưng và cuối cùng thành những chất thải (CO2, H2O,

131

NH3...) để thải ra môi trường. Năng lượng được tích trữ trong ATP và

được sử dụng cho nhiều phản ứng thu năng lượng khác.

Hai quá trình đồng hóa và dị hóa xảy ra liên tục liên quan với nhau

và không tách rời nhau. Quá trình đồng hóa là quá trình đòi hỏi năng

lượng cho nên đồng thời phải xảy ra quá trình dị hóa để cung cấp năng

lượng cho quá trình đồng hóa. Do đó sự trao đổi chất và trao đổi năng

lượng là hai mặt của một vấn đề.

Tùy theo kiểu trao đổi chất, người ta chia sinh vật ra thành hai

nhóm: nhóm sinh vật tự dưỡng và nhóm sinh vật dị dưỡng.

Nhóm sinh vật tự dưỡng bao gồm tất cả các sinh vật tự tổng hợp

chất dinh dưỡng cần thiết cho chúng. Để tồn tại và phát triển, nhóm này

chỉ cần H2O, CO2, muối vô cơ và nguồn năng lượng. Có hai hình thức tự

dưỡng. Đó là hình thức tự dưỡng quang hợp và hình thức tự dưỡng hóa

hợp. Hình thức đầu thể hiện ở cây xanh và vi khuẩn tía, vi khuẩn lưu

huỳnh vốn dùng quang năng để tổng hợp chất hữu cơ. Hình thức sau được

thể hiện ở một số vi khuẩn nhận năng lượng trong quá trình oxy hóa các

chất vô cơ.

Nhóm sinh vật dị dưỡng bao gồm các sinh vật không có khả năng tự

tổng hợp chất dinh dưỡng từ các chất vô cơ mà phải sống nhờ vào các chất

dinh dưỡng của nhóm sinh vật tự dưỡng tổng hợp nên.

Như vậy, quá trình trao đổi chất của thế giới sinh vật liên quan chặt

chẽ với nhau, tạo nên chu kỳ trao đổi chất chung.

Ngoài cách chia trên, cũng theo kiểu trao đổi chất, người ta chia sinh

vật thành hai nhóm lớn: nhóm hiếu khí (aerob) và nhóm kỵ khí (anaerob).

Ánh sáng

Sinh vật

tự dưỡng

Sinh vật

dị dưỡng

Glucid, lipid,

O2

CO2, H2O, muối

chứa Nitrogen

132

Nhóm hiếu khí là kiểu trao đổi chất mà các quá trình oxy hóa có sự tham

gia của oxy khí quyển. Nhóm kỵ khí là kiểu trao đổi chất mà các quá trình

oxy hóa không có sự tham gia của oxy khí quyển.

Đa số các sinh vật thuộc nhóm hiếu khí. Nhóm kỵ khí chỉ là một

phần nhỏ của nhóm sinh vật dị dưỡng bậc thấp. Tuy vậy, giữa các cơ thể

hiếu khí và kỵ khí không có ranh giới rõ ràng. Sinh vật hiếu khí biểu hiện

rõ ràng nhất như người chẳng hạn cũng có thực hiện một phần các quá

trình trao đổi chất theo con đường kỵ khí (ví dụ như mô cơ)

Quá trình chuyển hóa trong cơ thể sống mang tính thống nhất và

riêng biệt. Các con đường chuyển hóa lớn trong mọi cơ thể động vật, thực

vật đơn bào, đa bào đều theo những giai đoạn tương tự nhau. Tuy vậy, nếu đi

sâu vào từng mô, cơ quan, cá thể từng loài thì lại có những nét riêng biệt.

Các phản ứng hóa học trong cơ thể xảy ra liên tục ở pH trung tính,

370

C, dưới tác dụng xúc tác của enzyme.

Ở động vật, các quá trình chuyển hóa được điều khiển bởi hệ thống

thần kinh

8.2. Khái niệm chung về trao đổi năng lượng và năng lượng sinh học

Trao đổi chất luôn gắn liền với trao đổi năng lượng. Đối với cơ thể

người, động vật và phần lớn vi sinh vật thì nguồn năng lượng duy nhất là năng

lượng hóa học của các chất trong thức ăn. Trong cơ thể, các chất dinh dưỡng

chủ yếu và quan trọng là glucid, lipid và protein đều bị oxy hóa. Lipid và glucid

đi vào cơ thể bị "đốt cháy" sẽ sinh ra CO2, H2O và NH3, chất này tác dụng với

CO2

chuyển thành carbamid (ure).

Các quá trình oxy hóa khử sinh học thuộc các phản ứng dị hóa có ý nghĩa

rất quan trọng. Chúng không những chỉ là nguồn năng lượng quan trọng dùng

để thực hiện các phản ứng tổng hợp khác nhau mà còn là nguồn cung cấp các

hợp chất trung gian dùng làm nguyên liệu cho các phản ứng tổng hợp và đóng

vai trò hết sức quan trọng trong việc liên hợp các quá trình trao đổi chất.

Để tồn tại và phát triển, cơ thể cần phải được cung cấp liên tục năng

lượng. Trong hoạt động sống của mình, cơ thể biến đổi năng lượng từ dạng này

sang dạng khác và sự biến đổi năng lượng trong cơ thể sống cũng tuân theo các

quy luật vật lý như sự biến đổi năng lượng ở giới vô cơ.

133

So sánh về năng lượng sinh học và năng lượng kỹ thuật ta thấy có những

đặc điểm sau: thứ nhất, cơ thể không sử dụng nhiệt năng thành công có ích

được; thứ hai, sự giải phóng năng lượng trong cơ thể là dần dần, từng bậc; thứ

ba, sự giải phóng năng lượng đi kèm theo sự phosphoryl hóa nghĩa là năng

lượng giải phóng được cố định lại ở liên kết este với phosphoric acid trong

phân tử ATP vốn được gọi là liên kết cao năng. Từ dạng năng lượng trung gian

này (ATP) mà có thể dự trữ và sử dụng năng lượng vào các hoạt động sống; thứ

tư, có thể không sử dụng được năng lượng tự do của tất cả các loại phản ứng phát

nhiệt mà nguồn năng lượng duy nhất cơ thể sử dụng là của các quá trình oxy hóa.

8.2.1. Sự biến đổi năng lượng tự do

Sự thay đổi về đại lượng của năng lượng tự do là một chỉ tiêu quan trọng

nhất của hiệu ứng năng lượng tức là hệ số của tác dụng hữu hiệu của phản ứng.

Có thể định nghĩa năng lượng tự do là lượng năng lượng mà ở một nhiệt độ

nhất định nào đó có thể biến thành công.

Tế bào có thể tạo ra và duy trì được cấu trúc trật tự và phức tạp của mình

nhờ chúng liên tục tiếp nhận năng lượng tự do từ môi trường ở dạng quang

năng hoặc hóa năng và biến hóa nó thành các dạng năng lượng sinh học để

phục vụ cho các quá trình hoạt động sống. Sự biến hóa, tích lũy và sử dụng

năng lượng sinh học xảy ra song song với sự chuyển hóa vật chất và tuân thủ

các nguyên tắc của nhiệt động học.

Những biến đổi năng lượng tự do của hệ thống phản ứng được ký hiệu

bằng UG có giá trị là Kcal/mol. Đại lượng của UG là hiệu số giữa lượng năng

lượng tự do của trạng thái cuối (sau phản ứng) G2 và năng lượng tự do của

trạng thái đầu (trước phản ứng) G1. Nếu UG<0 (có giá trị âm), phản ứng tỏa

nhiệt, có thể xảy ra một cách tự phát. Ví dụ các phản ứng thủy phân đều thuộc

loại phản ứng này. Nếu UG = 0, hệ thống ở trạng thái cân bằng. Nếu UG>0

(có giá trị dương), phản ứng thu nhiệt, muốn thực hiện phản ứng cần phải cung

cấp năng lượng. Các phản ứng thu nhiệt chỉ có thể được thực hiện cùng với các

phản ứng tỏa nhiệt, nghĩa là việc tăng năng lượng tự do chỉ có thể có được do

các phản ứng liên hợp khác tiến hành với việc giảm năng lượng tự do. Các quá

trình cơ bản gắn liền với hoạt động sống của cơ thể, nhiều kiểu làm việc của tế

bào, các phản ứng tổng hợp đều là những phản ứng thu nhiệt luôn luôn liên hợp

với các phản ứng tỏa nhiệt.

UG được tính theo công thức:

134

UG = UG

0

+ RT lnK

trong đó UG0

là sự biến đổi năng lượng tự do tiêu chuẩn của phản ứng ở

250

C khi nồng độ của tất cả các chất phản ứng là 1 mol và áp suất là 101,3 KPa

(1atm), R là hằng số khí, T là nhiệt độ tuyệt đối, K là hằng số cân bằng của

phản ứng bằng [C]

c

. [D]

d

/[A]

a

[B]

tức là nồng độ của các chất tham gia phản ứng

A + B ' C + D; a, b, c, d là số lượng phân tử A, B, C, D tham gia phản ứng.

Trong hệ thống sinh học, khi tính giá trị UG0

cần chú ý đến pH, ở nồng

độ H+

là 1 mol, pH=0. Trạng thái ion hóa của nhiều hợp chất sinh học bị biến đổi

khi pH thay đổi. Vì vậy, để thuận tiện cho việc tính toán, xem trạng thái chuẩn

của pH là 7 và ký hiệu sự thay đổi năng lượng tự do chuẩn ở pH 7,0 là UG0

'.

8.2.2. Liên kết cao năng và vai trò của ATP

Các liên kết hóa học giữa các nguyên tử đều là những tác nhân mang chủ

yếu của năng lượng tự do trong các chất hữu cơ. Vì vậy, trong việc biến tạo của

các liên kết hóa học trong phân tử, mức năng lượng tự do của hợp chất sẽ thay

đổi. Xét về mặt năng lượng trong các hợp chất hữu cơ có hai loại liên kết: Liên

kết thường và liên kết cao năng (liên kết giàu năng lượng). Liên kết thường là

liên kết mà khi phân giải hoặc tạo thành nó có sự biến đổi năng lượng vào

khoảng 3 Kcal trên một phân tử gam (Ví dụ như liên kết este); còn đối với liên

kết cao năng sự biến đổi này lớn hơn nhiều từ 7 - 12 kcal/mol. Trong các hoạt

động sống của cơ thể sinh vật, các quá trình tổng hợp các chất phân tử lớn từ

các chất đơn giản, vận chuyển tích cực các chất qua màng tế bào, quá trình vận

động v.v. luôn đòi hỏi năng lượng tự do. Trong hệ thống sống cần có các chất,

các hệ thống nhận năng lượng tự do từ các quá trình này chuyển đến cho các

quá trình khác. ATP là chất phổ biến giữ vai trò này, là chất có vai trò trung

tâm trong trao đổi năng lượng ở tế bào và cơ thể sống, là chất liên kết hoặc có

thể nói là mắt xích giữa hệ thống sử dụng năng lượng và hệ thống sản sinh ra

năng lượng.

Trong phân tử ATP có 3 gốc phosphate, 1 gốc kết hợp với gốc ribose qua

liên kết este, 2 liên kết giữa 3 gốc phosphate là liên kết anhydric. Đó là các liên

kết cao năng được ký hiệu bằng dấu " ~ ". ATP ( Adenosine Tri Phosphate)

được biểu thị một cách khái quát như sau: Adenosine - ~ ~ (trong

đó là các gốc phosphoric acid ). Khi cắt đứt các liên kết cao năng này, sẽ

giải phóng số năng lượng lớn gấp hơn 2 lần so với liên kết este:

P P P

ATP + H2O ' ADP + H3PO4 UG0

= -7 Kcal/mol

P

P

135

ATP + H2O ' AMP + H4P2O7 UG0

= - 8,5 Kcal/mol

( ~ ) P P

Nếu tiếp tục thủy phân liên kết este của AMP để tạo thành adenosine và

phosphate vô cơ, năng lượng tự do được giải phóng của phản ứng này thấp hơn nhiều.

Sự chuyển hóa tương hỗ giữa ATP và ADP có vai trò đặc biệt quan trọng

trong quá trình trao đổi năng lượng của hệ thống sống.

Trong đa số trường hợp thường thấy phosphore hoặc sulphure tham gia

tạo thành liên kết cao năng (Bảng 8.1).

Bảng 8.1. Một số dạng liên kết cao năng thường gặp

Dạng liên kết Kiểu liên kết Có trong các chất UG0

( Kcal/mol)

ATP, GTP....... - 7 - Anhydrid phosphate

(pyro phosphate)

~ O ~ ADP, GDP..... - 7

1,3Diphosphoglyceric

acid

- 10 - Acyl phosphate

O

R - C - O ~

Aminoacyl-AMP - 7

O ~

- Enol phosphate

R - C - O ~

CH2

P P

P

P

Phosphoenol

Pyruvic acid

- 12,8

N ~

- Amid phosphate

( phosphoguanidin)

R - C - NH ~

P

NH

Creatin phosphate

Arginin phosphate

- 10,5

C ~ S

- Thioeste

O

R - C ~ S - R'

Acetyl coenzyme A

Acyl coenzyme A

- 8,8

P

P

136

8.3. Quá trình oxy hóa khử sinh học

Có thể định nghĩa quá trình oxy hóa khử là quá trình trao đổi điện tử. Sự

oxy hóa là sự tách một hay nhiều điện tử, ngược lại sự khử oxy là sự thu điện

tử. Tất cả các chất tham gia vào quá trình oxy hóa khử ở cơ thể sống đều có khả

năng nhường hoặc thu điện tử.

Đó chính là khả năng oxy hóa khử. Song song với sự oxy hóa có sự khử

oxy vì điện tử được chuyển từ chất bị oxy hóa sang chất bị khử:

- 2e L

Ví dụ: 2Fe

2+

+ Cl2 J 2Fe

3+

+ 2Cl

-

Đại lượng đặc trưng cho khả năng oxy hóa khử của mỗi chất gọi là thế

năng oxy hóa khử. Có thể tính được thế năng oxy hóa khử theo công thức sau:

RT [dạng oxy hóa] (1)

nF [ dạng khử]

ln E'n= E'o +

Trong đó: E'n là thế năng oxy hóa khử của một chất nhất định trong

những điều kiện nhất định. E'0 là thế năng oxy hóa khử ở các điều kiện tiêu

chuẩn ( nồng độ của hai dạng bằng nhau)

R là hằng số khí, T là nhiệt độ tuyệt đối, F là trị số Faraday

Bảng 8.2 trình bày E'0, hiệu điện thế oxy hóa khử UE'0 và năng lượng tự

do UGo

của mỗi hệ.

Thế năng oxy hóa khử còn dùng để tính năng lượng tự do (ΔGo

) được

giải phóng ra trong qúa trình oxy hóa khử theo phương trình:

ΔGo

= -nF.ΔE'o (2)

(Các ký hiệu đã được giải thích ở công thức tính thế năng oxy hóa khử

và liên quan đến bảng 8.2 ở trên)

* Tiến trình của sự oxy hóa sinh học:

Sự phân giải chất dinh dưỡng và giải phóng năng lượng của tế bào (sự dị

hóa) có thể được chia thành 3 giai đoạn cơ bản:

Ở giai đoạn đầu: các hợp chất cao phân tử bị thủy phân thành các chất

đơn giản có phân tử nhỏ hơn: các glucid (tinh bột, glucogen v.v...) thành các

137

monosaccharid (glucose), các protein thành các amino acid, các lipid thành các

acid béo.

Ở giai đoạn thứ hai: biến những chất đơn giản thành những chất 2 carbon

là acetyl CoA (CH3 - CO∼SCoA) (thiếu). Acetyl CoA được coi là sản phẩm

thoái hóa của các chất glucid, lipid và protein. Nó được hình thành do sự β-oxy

hóa acid béo, do sự oxy hóa của khoảng một nửa số α-amino acid cũng như do

sự oxy hóa hiếu khí glucose.

Bảng 8.2. Thế năng oxy hóa tiêu chuẩn của một số hệ thống

Hệ thống oxy hóa khử

Eo (volt)

pH7, 30o

C

UE'0

(volt)

UGo

(kcal/pH7,

30o

C)

Phosphoryl

hóa

ADP→

ATP

Điện cực hydro 2H+

/ H2 -0,42

NAD+

/ NADH + H+

-0,32

FAD/ FADH2 -0,10 +0,22 -10,1 1

Cytochrome b Fe

3+

/ Fe

2+

+0,04 +0,14 -6,4

Cytochrome c1 Fe

3+

/ Fe

2+

+0,23 +0,19 -8,7 1

Cytochrome c Fe

3+

/ Fe

2+

+0,26 +0,03 -1,4

Cytochrome a Fe

3+

/ Fe

2+

+0,29 +0,03 -1,4

Cytochrome a3 Fe

3+

/ Fe

2+

+0,55 +0,26 -12,0 1

Điện cực oxy 1/2 O2 / O2-

+0,81 +0,26 -12,0

+1,13 -52,0 3

Ở giai đoạn thứ ba: Acetyl CoA được hình thành ở giai đoạn thứ hai sẽ bị

oxy hóa hoàn toàn trong chu trình Szent-Györgyi-Krebs (chu trình citrat) để

hình thành CO2, H2O và giải phóng năng lượng. Phần lớn năng lượng được giải

phóng ra ở giai đoạn thứ ba này (khoảng 2/3)

Trong giai đoạn thứ hai và thứ ba khoảng 30-40% năng lượng hóa học

được biến thành nhiệt, hơn 60% năng lượng này được sử dụng để tổng hợp các

hợp chất cao năng.

138

Trong chu trình citrat, các hydrogen tách ra sẽ được oxy hóa qua chuỗi hô

hấp để tạo nên năng lượng và H2O. Năng lượng giải phóng được tích trữ ở các

phân tử ATP. Toàn bộ quá trình có thể được minh họa bằng sơ đồ trên hình 8.3.

Thức ăn

glucid lipid

glucose Acid béo Amino acid

Acetyl CoA

CO2

H2→NAD→FAD→CoQ→Cytb→Cytc1→Cytc→Cyta→Cyta3

O¯¯

1/2O2

ATP

ADP+P

2H+

H2O

Chu trình

citrat

Hình 8.3. Tiến trình oxy hóa sinh học

8.4. Chuỗi hô hấp tế bào và sự phosphoryl hóa oxy hóa

8.4.1. Chuỗi hô hấp tế bào

Chuỗi hô hấp tế bào là một hệ thống các enzyme xúc tác vận chuyển H+

và eletron từ cơ chất đến phân tử oxygen để tạo H2O. Trong tế bào, oxygen là

chất oxy hóa vạn năng, còn các phân tử hữu cơ khác nhau đóng vai trò chất cho

điện tử. Ở đây, điện tử và ion hydrogen của phân tử cơ chất không chuyển trực

139

tiếp cho oxygen không khí mà được chuyển dần qua một chuỗi phức tạp nhiều

mắt xích, bao gồm các hệ enzyme oxy hóa khử, có thế năng oxy hóa khử nằm

trong khoảng giữa thế năng oxy hóa khử của cơ chất và của oxygen. Các hệ

enzyme này được sắp đặt theo một trật tự tăng dần thế năng oxy hóa khử tạo

thành một chuỗi, gọi là chuỗi hô hấp hay chuỗi vận chuyển điện tử của tế bào.

Vai trò của chuỗi hô hấp là oxy hóa từng bậc hydrogen của cơ chất đến H2O.

Cơ chế hoạt động của chuỗi hô hấp tế bào có thể tóm lược như sau:

Chất cho nguyên tử hydrogen là NADH + H+

hoặc trong một số trường

hợp là FADH2. Nguyên tử hydrogen sẽ được chuyển tới hệ coenzyme Q (CoQ)

thông qua hệ trung gian flavoprotein chứa sắt và lưu huỳnh. Tiếp theo hai điện

tử của nguyên tử hydrogen được tách ra và đi vào hệ thống vận chuyển điện tử

theo trình tự các cytochrome b-c1-a-cytochromeoxydase (a3), cuối cùng điện tử

được chuyển cho oxygen. Nguyên tử oxygen bị khử (ở trạng thái ion hóa) sẽ

kết hợp với 2H+

(proton) để tạo ra phân tử nước.

Quá trình chuyển hydrogen và điện tử ở trong chuỗi hô hấp có thể phân

thành 4 giai đoạn:

- Giai đoạn 1: Thông thường hydrogen được tách từ cơ chất bởi

dehydrogenase có coenzyme NAD+

(hoặc NADP +

). Hydrogen của cơ chất gắn

vào NAD+

, cơ chất từ dạng khử chuyển thành dạng oxy hóa và NAD+

từ dạng

oxy hóa biến sang dạng khử. Mỗi cơ chất có một dehydrogenase đặc hiệu

tương ứng:

AH2 + NAD+

→ A + NADH +H+

(Trong đó AH2 và A là cơ chất dạng khử và dạng oxy hóa)

NADH không thể tự oxy hóa bởi oxygen được, tức là không thể trực tiếp

chuyển hydrogen cho oxygen mà phải chuyển sang cho dehydrogenase khác

có coenzyme là FMN hoặc FAD.

- Giai đoạn 2: NADH (hoặc NADPH) bị oxy hóa bởi dehydrogenase.

Enzyme này là một flavoprotein có coenzyme là FMN hoặc FAD. Hai eletron

được chuyển từ NADH + H+

tới FMN (hoặc FAD) cho FMNH2 (hoặc

FADH2):

NADH + H+

+ FMN→ NAD+

+ FMNH2

NADH dehydrogenase cũng chứa sắt, chất này có lẽ giữ vai trò vận

chuyển eletron. sắt không tham gia vào một nhóm hem nào. NADH

dehydrogenase là một protein chứa sắt không thuộc hem.

140

- Giai đoạn 3: H+

và eletron được chuyển từ FMNH2 tới coenzyme Q là

một dẫn xuất quinone, còn được gọi là ubiquinon (UQ). Coenzyme Q là một

chất tác dụng chuyển vận khá linh hoạt eletron giữa flavoprotein và hệ thống

cytochrome. Ubiquinon có thể nhận 1 hoặc 2e

-

và tạo ra semiquinone (UQH-

hoặc ubiquinol (UQH2). Đặc tính này cho phép nó làm cầu nối vận chuyển e

-

từ

chất cho 2e

-

sang chất nhận 1e

-

. Ngoài ra, vì phức UQ nhỏ và kỵ nước, nên nó

dễ dàng di chuyển trong lớp lipid đôi của màng ty thể làm con thoi vận chuyển

-

giữa các phức vận chuyển e

-

cồng kềnh khác trong màng ty thể.

- Giai đoạn 4: Các enzyme vận chuyển eletron từ CoQH2 đến oxygen. Đó

là hệ thống cytochrome, nó giữ vai trò trung tâm trong hô hấp tế bào. Mỗi

cytochrome là một protein enzyme vận chuyển electron có chứa nhóm ngoại

hem. Ở các phân tử cytochrome, nguyên tử sắt liên tục đi từ trạng thái sắt hai

(Fe

2+

) - dạng khử tới trạng thái sắt ba (Fe

3+

) - dạng oxy hóa trong quá trình

chuyển vận eletron. Nhóm hem chuyển vận một eletron; ngược lại với NADH,

flavin và coenzyme Q là những chất chuyển vận hai electron.

Có 5 cytochrome giữa CoQ và O2 trong chuổi chuyển vận electron. Thế

năng Oxy hóa khử của chúng tăng theo thứ tự: cytb, cytc1, cytc, cyta, cyta3.

Cấu trúc và tính chất của các Cytochrome này khác nhau. Nhóm phụ của

Cytochrome b, c1, c là protoporphyrin có sắt, thường gọi là hem. Cytochrome a

và a3 là những thành phần cuối của chuỗi hô hấp tế bào, chúng ở dạng một

phức chất gọi là Cytochrome oxydase. Electron được chuyển tới phần

Cytochrome a của phức chất, rồi tới Cytochrome a3 có chứa đồng (Cu+

) dạng

khử trong quá trình vận chuyển electron, có lẽ nó tham gia xúc tác vận chuyển

electron từ hem A của Cytochrome a3 tới oxygen.

Quá trình vận chuyển electron qua hệ thống Cytochrome được tóm lược

như sau:

2e

-

+ 2 cytb Fe

3+

→ 2 cytb Fe

2+

2 cytb Fe

2+

+ 2 cytc1 Fe

3+

→ 2 cytb Fe

3+

+ 2 cytc1 Fe

2+

2 cytc1 Fe

2+

+ 2 cytc Fe

3+

→ 2 cytc1 Fe

3+

+ 2 cytc Fe

2+

2 cytc Fe

2+

+ 2 cyta Fe

3+

→ 2 cytc Fe

3+

+ 2 cyta Fe

2+

2 cyta Fe

2+

+ 2 cyta3 Fe

3+

→ 2 cyta Fe

3+

+ 2 cyta3 Fe

2+

2 cyta3 Fe

3+

+ 1/2 O2 → 2 cyta3 Fe

3+

+ 1/2 O2-

141

Toàn bộ chuỗi hô hấp tế bào từ cơ chất dạng khử AH2 tới oxygen phân

tử qua NAD, flavoprotein, coenzyme Q, hệ thống Cytochrome được trình bày

ở hình 8.4.

AH2 A

NAD NADH + H+

ATP ADP + P

FADH2 (FMNH2) FAD (FMN)

CoQ CoQH2

2Fe

2+

2cytb 2Fe

3+

ATP ADP + P

2Fe

3+

2cytc1 2Fe

2+

2Fe

2+

2cytc 2Fe

3+

2H+

2Fe

3+

2cyta 2Fe

2+

ATP ADP + P

2Fe

2+

2cyta3 2Fe

3+

H2O

1/2O2 1/2O2-

Hình 8.4. Chuỗi hô hấp tế bào

Kết quả của chuỗi hô hấp tế bào thông thường là H2O, nhưng vẫn có

trường hợp tạo thành gốc superoxyd (O¯2) và hydrogenperoxyd (H2O2). Đây là

các chất độc đối với tế bào vì chúng tấn công các acid béo không no cấu tạo

lipid màng tế bào gây sự biến chất của cấu trúc màng. Theo các số liệu thực

nghiệm thì vị trí tạo thành O2¯ chính là vùng CoQ - cytochrome b do quá trình

tự oxy hóa của cibi-semiquinone. Như vậy, thường xuyên có sự rò rỉ 1 điện tử

ở trong ty thể và ty thể sử dụng khoảng 1 - 2% số lượng electron vận chuyển

đến cytochrome oxydase để tạo thành O¯2.

142

Superoxyd dismutase chứa Mn (Mn.SOD) có mặt trong matrix chỉ

chuyển được khoảng 80% O¯2 do sự rò rỉ điện tử thành H2O2. 20% O¯2 tạo

thành được chuyển vào cytoplasme, ở đây superoxyd dismutase của

cytoplasme (SOD) cùng hợp tác với các hệ thống bảo vệ khác sẽ phân hủy tiếp.

Có thể biểu thị các quá trình trên như sau:

O2 + e

-

→ O¯2 (gốc superoxyd )

2O¯2 + 2H+ SOD H2O2 + O2

2H2O2

C-ase

2H2O + O2

SOD và C-ase là các enzyme chống oxy hóa (antioxydant enzymes), bảo

vệ tế bào chống lại các gốc tự do độc hại.

Như vậy, quá trình vận chuyển hydrogen đến oxygen tạo ra H2O, thực

chất là một quá trình trao đổi electron (cho và nhận) một cách liên tục. Bản chất

của nó là một quá trình oxy hóa khử. Vì vậy, người ta gọi hô hấp tế bào là oxy

hóa khử sinh học.

Một điều cần lưu ý thêm là: chuỗi hô hấp tế bào đã trình bày là chuỗi hô

hấp tế bào bình thường, nhưng trong một số trường hợp, chuỗi có thể kéo dài

hoặc ngắn hơn phụ thuộc vào thế năng oxy hóa khử của cơ chất.

Quan niệm hiện đại về hô hấp tế bào còn bổ sung thêm nhiều chi tiết của

quá trình hô hấp tế bào kinh điển như đã trình bày. Những dạng di chuyển điện

tử và hydrogen còn phụ thuộc vào trạng thái cơ chất đến các phức hợp khác

nhau.

8.4.2. Sự phosphoryl hóa oxy hóa

Quá trình tổng hợp ATP là quá trình phosphoryl hóa:

ADP + H3PO4 → ATP

Đây là quá trình cần năng lượng. Như chúng ta đã biết, mối liên kết cao

năng trong ATP chứa năng lượng tự do là 7Kcal/mol nên để tổng hợp được

ATP từ ADP theo phản ứng trên cần cung cấp năng lượng tương đương

7Kcal/mol. Nguồn năng lượng cung cấp cho quá trình phosphoryl hóa rất khác

nhau. Sự phosphoryl hóa quang hóa là quá trình tổng hợp ATP ở lục lạp thể

nhờ năng lượng ánh sáng xảy ra trong quang hợp. Sự phosphoryl hóa oxy hóa

là quá trình tổng hợp ATP ở ty thể nhờ năng lượng thải ra trong các phản ứng

oxy hóa khử.

Theo quan niệm hiện nay, sự phosphoryl hóa oxy hóa là quá trình hình

thành ATP bằng cách chuyển electron và proton trong chuỗi hô hấp tế bào. Sự

tạo thành ATP trong chuỗi hô hấp tế bào được thể hiện ở hình 8.4. Theo

143

phương trình (2) cần có sự chênh lệch thế năng oxy hóa khử giữa các chất tham gia

trong chuỗi hô hấp tế bào vào khoảng 0,152 volt để tạo thành một phân tử ATP

volt

nF

G Eo

152,0

06,23.2

7

0

'

==

Δ

Trong chuỗi hô hấp có 3 điểm tương hợp giữa sự hô hấp với sự

phosphoryl hóa: 1) giữa NADH với flavoprotein; 2) giữa cytochrome b và c1;

3) giữa cytochrome a và cytochrome oxydase (hình 8.4.). Điều đó có nghĩa là

proton và electron đựoc chuyển từ NADH + H+

tới oxygen tạo được 3 điểm

phosphoryl hóa, còn proton và electron được chuyển trong chuỗi hô hấp tế bào

từ FADH2 chỉ có 2 điểm phosphoryl hóa.

Mối tương quan P/O (tỉ số P/O) là số phân tử phosphate vô cơ đượoc

chuyển thành dạng hữu cơ đối với sự tiêu thụ một nguyên tử oxygen. Tỉ số này

biểu thị sự tương quan giữa quá trình phosphoryl hóa và sự oxy hóa khử tế bào,

được gọi là chỉ số .

Như vậy có thể nói rằng sự phosphoryl hóa oxy hóa qua hệ thống vận

chuyển điện tử của chuỗi enzyme hô hấp là con đường chủ yếu đối với các sinh

vật hiếu khí nhằm khai thác năng lượng của các hợp chất hữu cơ một cách hữu

hiệu nhất để phục vụ cho các hoạt động sống của mình.

Bạn đang đọc truyện trên: Truyen2U.Pro